Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T02:03:37.405Z Has data issue: false hasContentIssue false

Atomic-layer Deposition for Improved Performance of III-N Avalanche Photodiodes

Published online by Cambridge University Press:  17 February 2014

John Hennessy
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA
L. Douglas Bell
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA
Shouleh Nikzad
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA
Puneet Suvarna
Affiliation:
College of Nanoscale Science and Engineering, State University of New York, Albany, NY
Jeffrey M. Leathersich
Affiliation:
College of Nanoscale Science and Engineering, State University of New York, Albany, NY
Jonathan Marini
Affiliation:
College of Nanoscale Science and Engineering, State University of New York, Albany, NY
F. (Shadi) Shahedipour-Sandvik
Affiliation:
College of Nanoscale Science and Engineering, State University of New York, Albany, NY
Get access

Abstract

We have investigated surface modification methods for avalanche photodiodes using dielectrics deposited by atomic layer deposition (ALD). Arrays of mesa GaN APDs were fabricated, and ALD Al2O3 was used for sidewall passivation prior to completing the APD array. The use of ALD Al2O3 in this manner was observed to result in a large average improvement in APD dark current when compared with devices using more conventional SiO2 passivation layers produced by chemical vapor deposition. Co-processed metal-oxide-semiconductor (MOS) capacitors fabricated with the same passivation layers show significant improvement in electrical interface quality for devices with ALD Al2O3.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Osinsky, A., Shur, M. S., Gaska, R., and Chen, Q., Electron. Lett. 34, 691 (1998).CrossRefGoogle Scholar
Verghese, S., McIntosh, K. A., Molnar, R. J., Mahoney, L. J., Aggarwal, R. L., Geis, M. W., Molvar, K. M., Duerr, E. K., and Melngailis, I., IEEE Trans. Electron Devices 48, 502 (2001).CrossRefGoogle Scholar
Carrano, J. C., Lambert, D. J. H., Eiting, C. J., Collins, C. J., Li, T., Wang, S., Yang, B., Beck, A. L., Dupuis, R. D., and Campbell, J. C., Appl. Phys. Lett. 76, 924 (2000).CrossRefGoogle Scholar
Limb, J. B., Yoo, D., Ryou, J. H., Lee, W., Shen, S. C., Dupuis, R. D., Reed, M. L., Collins, C. J., Wraback, M., Hanser, D., Preble, E., Williams, N. M., and Evans, K., Appl. Phys. Lett. 89, 011112 (2006).CrossRefGoogle Scholar
McClintock, R., Pau, J. L., Minder, K., Bayram, C., Kung, P., and Razeghi, M., Appl. Phys. Lett. 90, 141112 (2007).CrossRefGoogle Scholar
Hashizume, T., Ootomo, S., Inagaki, T., and Hasegawa, H., J. Vac. Sci. Technol. B 21, 1828 (2003).CrossRefGoogle Scholar
Chang, Y. C., Chang, W. H., Chiu, H. C., Tung, L. T., Lee, C. H., Shiu, K. H., Hong, M., Kwo, J., Hong, J. M., and Tsai, C. C., Appl. Phys. Lett. 93, 053504 (2008).CrossRefGoogle Scholar
Yang, C. M., Kim, D. S., Lee, S. G., Lee, J. H., and Lee, Y. S., IEEE Electron Device Lett. 33(4), 564 (2012.CrossRefGoogle Scholar
Suvarna, P., Tungare, M., Leathersich, J. M., Agnihotri, P., Shahedipour-Sandvik, F., Bell, L. Douglas, Nikzad, S., J. Electron. Mater. 42(5), 854 (2013).CrossRefGoogle Scholar
Cicek, E., Vashaei, Z., McClintock, R., Bayram, C., and Razeghi, M., Appl. Phys. Lett. 96, 261107 (2011).CrossRefGoogle Scholar
Carrano, J. C., Li, T., Grudowski, P. A., Eiting, C. J., Dupuis, R. D., and Cambell, J. C., Appl. Phys. Lett. 72, 542 (1998).CrossRefGoogle Scholar
Nicollian, E. H. and Brews, J. R., MOS (Metal Oxide Semiconductor) Physics and Technology (John Wiley & Sons, New York, 1982), Chap. 8.Google Scholar
Schroder, D. K., Semiconductor Material and Device Characteristics (Wiley, New York, 1990), Chap. 6.Google Scholar