Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-19T04:33:57.905Z Has data issue: false hasContentIssue false

Amorphous Si1-YGeY:H, F films obtained by Low Frequency PECVD for uncooled microbolometers

Published online by Cambridge University Press:  21 March 2011

R. Ambrosio
Affiliation:
Instituto Nacional de Astrofísica, Óptica y Electrónica, INAOE, Apdo. P. 51 and 216, P.O. Box. 72000, Puebla, Mexico.
A. Torres
Affiliation:
Instituto Nacional de Astrofísica, Óptica y Electrónica, INAOE, Apdo. P. 51 and 216, P.O. Box. 72000, Puebla, Mexico.
A. Kosarev
Affiliation:
Instituto Nacional de Astrofísica, Óptica y Electrónica, INAOE, Apdo. P. 51 and 216, P.O. Box. 72000, Puebla, Mexico.
A. S. Abramov
Affiliation:
A.F Ioffe Phys. Techn. Institute St.- Petersburg, 194021, Russia.
A. Heredia
Affiliation:
Instituto Nacional de Astrofísica, Óptica y Electrónica, INAOE, Apdo. P. 51 and 216, P.O. Box. 72000, Puebla, Mexico.
M. Landa
Affiliation:
Instituto Nacional de Astrofísica, Óptica y Electrónica, INAOE, Apdo. P. 51 and 216, P.O. Box. 72000, Puebla, Mexico.
M. Garcia
Affiliation:
Instituto Nacional de Astrofísica, Óptica y Electrónica, INAOE, Apdo. P. 51 and 216, P.O. Box. 72000, Puebla, Mexico.
Get access

Abstract

In this work, we report the composition, optical, and electrical properties of a- Si1-YGeY: H, F films to be used as sensing layer in uncooled microbolometers. The a-Si1-YGeY films where Y is Ge content in solid phase were deposited by low frequency PECVD from SiH4 and GeF4 feed gases, and H2 and Ar were used for dilution. The film composition, IR transmission and temperature dependence of conductivity were measured. The reduction of conductivity activation energy from 0.86 eV to 0.39 eV and the increase of room temperature conductivity from 1x10−9 to 2.1×10−3 Ohm−1cm−1 were observed with the change of Y from 0 (Si) to 1(Ge). These results demonstrate this material to be a good candidate as a sensing material in uncooled micro-bolometers, due to its high absorption in the range of λ = 10-13 μm, its relatively high activation energy, Ea=0.4 eV, consequently, a high temperature coefficient of resistance (TCR), and moderate resistivity at room temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Syllaios, A.J., Schimert, T.R., Gooch, R.W., McCardel, W.L., Ritchey, B.A., Tregilgas, J.H., Mat. Res. Soc. Symp. Proc. 609, A14.4.1. (2000).Google Scholar
2. Tribolet, P., Chorier, P., Manissadjian, A., Costa, P., Chatard, J.P., Proc. SPIE 4028, 438 (2001).Google Scholar
3. Unewisse, M.H., Craig, B.I., Watson, R.J., Reinhold, O., Liddiard, K.C., Proc. SPIE 2554, 43 (1995).Google Scholar
4. Torres, A., Kosarev, A., García, M., Ambrosio, R, J. Non-Crystalline Solids, 329/1–3, 180 (2003).Google Scholar
5. Ambrosio, R., Torres, A., Kosarev, A., Zuñiga, C., Abramov, A., J. Non-Cryst. Solids, 329, 135 (2003).Google Scholar
6. Clement, M.,.Iborra, J. Sangrador, and Barberán, I., J. Vac. Sci. Technol., b, 19, (1), 294 (2001).Google Scholar
7. Chou, Y. Pin, Lee, Si-Chen, J.Appl.Phys., 83(8), 4111 (1998).Google Scholar
8. Rogalski, A. and Chrzanowski, K., Opto-electronics Review, 10 (2), 111 (2002).Google Scholar
9. Wang, Honchen, Yi, Xinjian, Huang, Guang, Xiao, Jin, Li, Xiongwei, Chen, Sihai, Infrared Physiscs & Technology. 45, 53 (2004).Google Scholar
10. Sedky, Sherif, Fiorini, Paolo, Baert, Kris, Hermans, Lou and Mertens, Robert, IEEE transactions on electron devices. 46, (4), 675 (1999).Google Scholar
11. Jahanzeb, Agha, Travers, Christine M., Butler, Zeynep C., Butler, Donald P. and Tan, Stephen G., IEEE transactions on electron devices, 44, (10), 1795 (1997).Google Scholar
12. Heredia-J, A., Hidalga-W, F.J. De la, Torres-J, A. and Jaramillo-N, A., In press in Proceedings of 204th Meeting of the Electrochemical Society.Google Scholar
13. Heredia-J, A., Torres-J, A., Hidalga-W, F.J. De la, Jaramillo-N, A., Sanchez-M, J., Zúñiga, C., Basurto, M. and Pérez, A., Mat. Res. Soc. Symp. Proc. 796, (2004).Google Scholar
14. Enukova, N. L. Ivanova, Kulikov, Yu. V., Maylarov, V. G., Khretov, I.A., Tech. Phys. Lett., 23 (7), 504 (1997).Google Scholar
15. Iborra, E., Clement, M., Vergara, L. and Sangrador, J., J. of Micromech. Sys., 11(4), 322 (2002).Google Scholar
16. Kosarev, A., Torres, A., Ambrosio, R., Zuniga, C., Hernandez, Y., Abramov, A. S., in: VII International Workshop on Non Crystalline Solids, 65 (2003).Google Scholar
17. Ambrosio, R., Torres, A., Kosarev, A., Ilinski, A., Zuñiga, C., Abramov, A. S., presented in ICAMS20 conference, Brasil, (2003). To be published in Journal of Non Crystalline Solids.Google Scholar
18. Mackenzie, K.D., Eggert, J.R., Leopold, D.J., Li, Y.M., Paul, W.., Phys.Rev, B–31, 2198 (1985).Google Scholar
19. Roedern, B. Von, Paul, D.K., Blake, J., Collins, R.W., Moddel, G., Paul, W., Phys.Rev., B–25 (12),7678 (1982).Google Scholar