Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T01:33:03.305Z Has data issue: false hasContentIssue false

Amorphous Bismuth: Structure-Property Relations and the Size of the Supercell

Published online by Cambridge University Press:  23 January 2013

Zaahel Mata-Pinzón
Affiliation:
Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México. Apartado Postal 70-360, México D. F. 04510, México.
Ariel A. Valladares
Affiliation:
Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México. Apartado Postal 70-360, México D. F. 04510, México.
Alexander Valladares
Affiliation:
Facultad de Ciencias, Universidad Nacional Autónoma de México. Apartado Postal 70-542, México D. F. 04510, México.
R. M. Valladares
Affiliation:
Facultad de Ciencias, Universidad Nacional Autónoma de México. Apartado Postal 70-542, México D. F. 04510, México.
Get access

Abstract

It has been argued that for the simulation of amorphous materials, the larger the periodic supercell the better the representation. We contend that for certain properties there is a minimum supercell size above which one obtains a good representation of the topological and electronic collective properties of the material independent of the size. To show this contention we have chosen two periodic supercells of bismuth, one with 64 atoms and another with 216 atoms, which were amorphized using our undermelt-quench approach [1]. The originally crystalline structures were subjected to a heating-and-cooling process starting at an initial temperature of 300 K and linearly going up to 540 K, in 100 simulational steps, 4.5 K just below the melting temperature of bismuth (the undermelt section of the process) under normal conditions of pressure. Next, the sample was cooled down to 0K (the quench section of the process), in 225 simulational steps with the same absolute cooling rate as the heating process. Then the samples obtained were geometry-optimized to find the final metastable amorphous structures. These structures were analyzed by calculating their radial (pair) distribution functions, the plane angle distributions and the electron densities of states. Results will be presented that manifest that after proper normalization due to the difference in the number of atoms and the number of electron energy levels, the two structures are, for all practical purpose, the same, indicating that in this case, the size of the cell does not seem to play a major role in the properties determined.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Valladares, Ariel A., Díaz-Celaya, Juan A., Galván-Colín, Jonathan, Mejía-Mendoza, Luis M., Reyes-Retana, José A, Valladares, Renela M., Valladares, Alexander, Alvarez-Ramírez, Fernando, Qu, Dongdong and Shen, Jun, Materials, 4, 716781, (2011).10.3390/ma4040716CrossRefGoogle Scholar
Valladares, A. A., Álvarez, F., Liu, Z., Sticht, J., Harris, J., Eur. Phys. J. B, 22, 443453 (2001).10.1007/s100510170094CrossRefGoogle Scholar
FASTSTRUCTURE SIMULATED ANNEALING, User Guide. Release 4.0.0, San Diego, Molecular Simulations, Inc., September 1996 Google Scholar
Harris, J., Phys. Rev. B 31, 17701779 (1985)10.1103/PhysRevB.31.1770CrossRefGoogle Scholar
Wyckoff, R.W.G., Crystal Structures 1, 2nd ed. (Interscience Publishers, New York, 1963) p. 7.Google Scholar
Buckel, W., Physik, Z. 138, 136 (1954).Google Scholar
Richter, H., J. Vacuum Sci. and Tech. 6, 855 (1969).10.1116/1.1492720CrossRefGoogle Scholar
Fujime, S., JJAP, 5, 764 (1966)Google Scholar
Takagi, M., J. Phys. Soc. Jpn. 11, 396. (1955).10.1143/JPSJ.11.396CrossRefGoogle Scholar
Chamberlain, O., Phys. Rev. 77, 305 (1950)10.1103/PhysRev.77.305CrossRefGoogle Scholar
Valladares, Ariel A. in Glass Materials Research Progress, edited by Wolf, Jonas C. and Lange, Luka, (Nova Science Publishers, Inc., 2008) pp. 61124.Google Scholar
Lin, Z., Harris, J., J. Phys. Condens. Matter 4, 1055 (1992)Google Scholar
Vosko, S. H., Wilk, L., Nusair, M., Can. J. Phys. 58, 1200 (1980)10.1139/p80-159CrossRefGoogle Scholar
Delley, B., J.Phys. Chem., 92, 508 (1990).10.1063/1.458452CrossRefGoogle Scholar
Delley, B., J. Chem. Phys.,113,18, 7756 (2000)10.1063/1.1316015CrossRefGoogle Scholar
Lifshits, Il’ya M., Gredeskul, Sergei A., Pastur, Leonid A., Introduction to the Theory of Disordered Systems (John Wiley & Sons, Inc., 1988).Google Scholar