Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-20T06:32:10.639Z Has data issue: false hasContentIssue false

Accuracy Improvements in LPC Measurements for CMP Slurries

Published online by Cambridge University Press:  31 January 2011

Bruno Tolla
Affiliation:
[email protected], Cabot Microelectronics Corporation, Aurora, Illinois, United States
David Boldridge
Affiliation:
[email protected], Cabot Microelectronics Corporation, Aurora, Illinois, United States
Get access

Abstract

We have examined the Large Particle Count (LPC) analytical method to see whether there are opportunities to improve both the accuracy and precision in hope of improving the utility of the LPC measurement. We have identified weaknesses in the current method that limit both its accuracy and its precision, and which can introduce count errors in excess of a factor of 10. We propose modifications to the current method which result in both accuracy and precision improvements. We recommend these improvements as absolutely necessary for any experiments designed to test the correlation between LPC and defectivity.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Zantye, P. B., Kumar, A. and Sikder, A.K., Mat. Sci. Eng. R, 45 89 (2004).Google Scholar
2 Steigerwald, J. M., Murarka, S.P. and Gutman, R.J., Chemical Mechanical Planarization of Microelectronics Materials, John Wiley and Sons, New York (1997).Google Scholar
3 Anthony, L., Miner, J., NBaker, M., Lai, W., Sowell, J., Maury, A. and Obeng, Y., Electrochem. Soc. Proc., 98-7 181 (1998).Google Scholar
4 Nicholes, K., Singh, R., Grant, D. and Litchy, M., Semicon. Int. 24 201 (2001).Google Scholar
5 Bare, J. P. and Lemke, T. A., Micro 15 53 (1997).Google Scholar
6 Nicoli, D. F., Hasapidis, K., O'Hagan, P., Pokrajac, G. and Schade, B., Am. Lab., 33 32 (2001).Google Scholar
7 Nicoli, D. F., O'Hagan, P., Pokrajac, G. and Hasapidis, K., Am. Lab., 32 18 (2000).Google Scholar
8 Hanus, L. H, Battafarano, S. A. and Wank, A. R., Micro 21 71 (2003).Google Scholar
9 Remsen, E. E., Anjur, S., Boldridge, D., Kamiti, M., Li, S., Johns, T., Dowell, C., Kasthurirangan, J. and Feeney, P., J. Electrochem. Soc., 153, G453 (2006).Google Scholar
10 Remsen, E. E., Anjur, S. P., Boldridge, D., and, M. Kamiti Li, S., Mat. Res. Soc. Symp. Proc. 867, W2.4.1 (2005).Google Scholar
11 Stutz, M., Barthel, H. and Moinpour, M., MRS Symposium Proc. 991 0991-C04-02 (2007).Google Scholar
12 Nicholes, K., Lichty, M.R., Hood, E., Easter, W.G., Bhethanabotla, V.B., Cheema, L. and Grant, D., 8th Int. CMP-MIC Conf., 221 (2003).Google Scholar
13 Bielmann, M., Mahajan, U. and Singh, R.K., Electrochem. Solid State Lett. 2 401 (1999).Google Scholar
14 Wells, D. and Nicoli, D. F., U.S. Patent 5,835,211, (1998).Google Scholar
15 Whitby, K. T. and Liu, B.Y. H., J. Coll. Interface Sci. 25 537 (1967).Google Scholar
16 Williams, S. K. R., Park, I., Remsen, E. and Moinpour, M., MRS Symposium Proc. 991 0991-C09-01 (2007).Google Scholar