Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-06T10:07:20.523Z Has data issue: false hasContentIssue false

Understanding the Second Harmonic Generation of Light from Nanometal Composites

Published online by Cambridge University Press:  21 February 2011

Colby A. Foss Jr
Affiliation:
Dept. of Chemistry, Georgetown University, Washington, DC 90057, osscagusun.georgetown.edu
Get access

Abstract

We have synthesized two sets of nanometal composites of different metal concentrations via electrodeposition of gold into porous aluminum oxide membranes Within each set, both centrosymmetric and non-centrosymmetric particles were produced whose linear and nonlinear optical effects were investigated.

Because our method of template synthesis allows for the close examination of our composite materials in terms of shape, size. and symmetry, we can interpret the SHG response in terms of differences in local field enhancements of magnetic dipole and quadrupole modes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sandrock, M.L.; Pibel, C.D.; Geiger, F.M.; Foss, C.A. Jr, J. Phys. Chem B.,103, 2668 (1999).Google Scholar
2. Sandrock, M.L.; Foss, C.A. Jr, J. Phys. Chem. B., December 1999 (accepted).Google Scholar
3. Leitner, A. Molecular Physics, 2, 197 (1990).Google Scholar
4. Lam, D.M.K.; Rossiter, B.W., Scientific American, November 1991, 80.Google Scholar
5. Chumanov, G.; Sokolov, K.; Gregory, B.W.; Cotton, T.M., J. Phys. Chem, 99, 9466 (1995).Google Scholar
6. Moskovits, M., Rev. Mod. Phys., 57, 783 (1985).Google Scholar
7. Storhoff, J.J.; Eighanian, R.; Mucic, R.C.; Mirkin, C.A.; Letsinger, R.L., J. Am. Chem. Soc., 120, 1959 (1998).Google Scholar
8. Kerker, M. Ed. Selected Papers on Surface-Enhanced Raman Scattering; SPIE Optical Engineering Press: Bellingham, WA, 1990.Google Scholar
9. Zeman, E.; Schatz, G.C. J. Phys. Chem., 91, 634 (1987).Google Scholar
10. Bergman, D.J.; Nitzan, A., Chem. Phys. Lett., 88, 409 (1982).Google Scholar
11. Furneaux, R.C.; Rigby, W.R.; Davidson, A.P., Nature, 337, 147 (1989).Google Scholar
12. Foss, C.A. Jr; Hornyak, G.L.; Stockert, J.A.; Martin, C.R., J. Phys. Chem, 98, 2963 (1994).Google Scholar
13. Al-Rawashdeh, N.R.; Sandrock, M.L.; Seugling, C.J.; Foss, C.A. Jr, J. Phys. Chem B, 102, 361 (1998).Google Scholar
14. Murnane, M.; Kapteyn, H.C.; Huang, C.P.; Asaki, M.T.; Garvey, D. Mode-locked Ti-Sapphire Laser; Washington State University, 1992.Google Scholar
15. Guyot-Sionnest, P.; Shen, Y.R. Phys. Rev. B, 38, 7985 (1988).Google Scholar
16. Berkovic, G.; Efrima, S. Langmuir, 9, 355 (1993).Google Scholar
17. Johnson, P.B.; Christy, R.W., Phys. Rev. B, 6, 4370 (1972).Google Scholar
18. Meier, M.; Wokaun, A., Opt. Lett., 8, 851 (1983).Google Scholar
19. Boyd, R.W. Nonlinear Optics; Academic Press: Boston, 1992.Google Scholar
20.Within the dipole approximation, SHG from centrosymmetric particles is also possible provided that the particle dimensions are comparable to the coherence length of the SHG process (see for example: Yan, E.C.Y.; Liu, Y.; Eisenthal, K.B., J. Phys. Chem. B, 102, 6331 (1998)). For the conditions employed in our experiments, the coherence length is much smaller than the gold particle dimensions.Google Scholar
21. Dewitz, J.P.; Hubner, W.; Bennemann, K.H., Z. Phys. D. 37, 75 (1996).Google Scholar
22. Ostling, D.; Stampfli, P.; Bennemann, K.H., Z. Phys. D, 28, 169 (1993).Google Scholar
23. Hua, X.M.; Gersten, J.I. Phys. Rev. B, 33, 3756 (1986).Google Scholar