Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-17T19:55:25.808Z Has data issue: false hasContentIssue false

Transient Diffusion Effects of Sb and B In Si Induced by Medium- and High-Energy Implants of Si+ and As+ Ions

Published online by Cambridge University Press:  10 February 2011

G. Lulli
Affiliation:
CNR-Istituto LAMEL, Via P.Gobetti 101, 1-40129 Bologna, Italy
S. Solmi
Affiliation:
CNR-Istituto LAMEL, Via P.Gobetti 101, 1-40129 Bologna, Italy
M. Bianconi
Affiliation:
CNR-Istituto LAMEL, Via P.Gobetti 101, 1-40129 Bologna, Italy
E. Napolitani
Affiliation:
INFM, Dipartimento di Fisica G.Galilei, Universith degli Studi di Padova, Via Marzolo 8. 1-35131 Padova, Italy
A. Carnera
Affiliation:
INFM, Dipartimento di Fisica G.Galilei, Universith degli Studi di Padova, Via Marzolo 8. 1-35131 Padova, Italy
Get access

Abstract

In this work we investigate the influence of defects injected by ions of different mass and energy on the diffusion of B and Sb markers in bulk Si. MeV (Si or As) ions induce Sb transient enhanced diffusion, whose amount increases with increasing the near-surface vacancy supersaturation generated by the knock-on recoil mechanism. The enhancement effect lasts less than 2 h at 800 °C and less than 10 min at 900 °C. At higher (1000 °C) annealing temperature it appears that the influence of extra-interstitials introduced by the implants comes into play, inducing a retardation in Sb diffusion which is larger for the higher close implant. The effect of vacancy supersaturation observed in medium-energy implanted samples is considerably weaker than the one found in high-energy implanted ones. In the case of B marker high-energy implantation induces moderate enhanced diffusion, much smaller than the one observed -after medium-energy implants.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Giles, M. D., J. Electrochem. Soc. 138, 1160 (1991).Google Scholar
2. Herner, S. B., Gossman, H. J., Pelaz, L. P., Gilmer, G. H., Jaraiz, M., Jacobson, D. C., and Eaglesham, D. J., J. Appl. Phys. 83. 6182 (1998).Google Scholar
3. Pelaz, L., Gilmer, G. H., S, M. Jaraiz., Herner, B., Gossman, H. J., Eaglesham, D. J., Hobler, G., Rafferty, C. S., and Barbolla, J., Appl. Phys. Lett. 73. 1421 (1998).Google Scholar
4. Servidori, M., Sourek, Z., and Solmi, S., J. Appl. Phys. 62, 1723 (1987).Google Scholar
5. Eaglesham, D. J., Haynes, T. E., Gossman, H. J., Jacobson, D. C., Stolk, P. A., and Poate, J. M., Appl. Phys. Lett. 70, 3481 (1997).Google Scholar
6. Venezia, V. C., Haynes, T. E., Agarwal, A., Gossman, H. J., and Eaglesham, D. J., in Defects and Diffusion in Silicon Processing, edited by Rubia, T. Diaz de la. Coffa, S.. Stolk, P. A.. and Rafferty, C. S. (Mater. Res. Soc. Symp. Proc. 469, Pittsburgh, PA, 1997) pp. 303308.Google Scholar
7. Roth, E. G., Holland, O. W., Vpnezia, V. C., and Niplsen., B. J. Electron. Mater. 26. 1349 (1997).Google Scholar
8. Venezia, V. C., Haynes, T.E., Agarwal, A., Pelaz, L., Gossman, H. J., Jacobson, D. C., and Eaglesham, D. J., Appl. Phys. Lett. 74, 1299 (1999).Google Scholar
9. Fahey, P. M., Griffin, P. B., and Plummer, J. D., Rew. Mod. Phys. 61, 289 (1989).Google Scholar
10. Mazzone, A. M., Physira Status Solidi A 95, 149 (1986).Google Scholar
11. Nielsen, B., Holland, O. W., Leung, T. C., and Lynn, K. G., J. Appl. Phys. 74. 1636 (1993).Google Scholar
12. Narayan, J. and Holland, O. W., J. Electrochem. Soc. 131, 2651 (1984).Google Scholar
13. Solmi, S., Baruffaldi, F., and Canteri, R., J. Appl. Phys. 69. 2135 (1991).Google Scholar
14. Gossman, H. J., Haynes, T. E., Stolk, P. A., Jacobson, D. C., Gilmer, G. H., Poate, J. M., Luftman, H. S., Mogi, T. K., and Thompson, M. O., Appl. Phys. Lett. 71, 3462 (1997).Google Scholar