Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-05T04:56:57.936Z Has data issue: false hasContentIssue false

Synthesis of Water Soluble PbSe Quantum Dots

Published online by Cambridge University Press:  01 February 2011

Lioz Etgar
Affiliation:
[email protected], Technion, Nanoscience and Nanotechnology, Technion city, Haifa, 32000, Israel
Efrat Lifshitz
Affiliation:
[email protected], Technion, Chemistry, Israel Institute of Technology, Haifa, 32000, Israel
Rina Tannenbaum
Affiliation:
[email protected], Technion, Chemical Engineering, Israel Institute of Technology, Haifa, 32000, Israel
Get access

Abstract

Water-soluble PbSe semiconductor quantum dots (QDs) with near-infrared absorption of 1100-2520 nm (corresponding to a diameter of 3-13 nm) were synthesized using 2-aminoethanthiol. The oleic acid stabilizing ligands used in the traditional synthesis of PbSe were exchanged with the 2-aminoethanethiol (AET) ligands, which promoted the solubilization of the QDs in an aqueous medium. This occurred due to the attraction of the surrounding water molecules to the exposed amino-group, thus allowing the particles to reside in the water environment. The water-soluble PbSe QDs have very narrow size distribution (σ ≈ 4.5-5.5%). Transmission electron microscopy (TEM), spectrophotometric measurements, and Fourier transform infrared (FTIR) spectroscopy indicate that the morphology, size, size distribution and chemical composition of the PbSe QDs remained unchanged during the transfer to an aqueous medium. In conclusion, the ability to synthesize water soluble PbSe QDs with stable properties and uniform size distribution will allow them to have substantial advantages for biological applications such as biosensors and drug delivery.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Craighead, H. G. Science 2000, 290, 1532; Quake, S. R.; Scherer, A. Science 2000, 290, 1536; Jager, E. W. H.; Smela, E.; Inganäs, O. Science 2000, 290, 1540.Google Scholar
2. Gittins, D. I.; Caruso, F. Angew. Chem. Intl. Ed. 2001, 40(16), 3001.Google Scholar
3. Henglein, A. Chem. Rev. 1989, 89, 1861.Google Scholar
4. Alivisatos, A. P. J. Phys. Chem. 1996, 100, 13226.Google Scholar
5. Kagan, C. R.; Murray, C. B.; Bawendi, M. G. Phys. Rev. B 1996, 54, 8633.Google Scholar
6. Nirmal, M.; Brus, L. Acc. Chem. Res. 1999, 32, 407.Google Scholar
7. (a) Hines, M. A.; Guyot-Sionnest, P. J. Phys. Chem. 1996, 100, 468. (b) Peng, X.; Schlamp, M. C.; Kadavanich, A. V.; Alivisatos, A. P. J. Am. Chem. Soc. 1997, 119, 7019. (c) Dabbousi, B. O.; Rodriguez- Viejo, J.; Mikulec, F. V.; Heine, J. R.; Mattoussi, H.; Ober, R.; Jensen, K. F.; Bawendi, M. G. J. Phys. Chem. B. 1997, 101, 9463.Google Scholar
8. (a) Talapin, D. V.; Rogach, A. L.; Kornowski, A.; Haase, M.; Weller, H. Nano Lett. 2001, 1, 207. (b) Peng, Z. A.; Peng, X. J. Am. Chem. Soc. 2001, 123, 183.Google Scholar
9. (a) Bailey, R. E.; Nie, S. J. Am. Chem. Soc. 2003, 125, 7100. (b)Zhong, X.; Han, M.; Dong, Z.; White, T. J.; Knoll, W. J. Am. Chem.Soc. 2003, 125, 8589.Google Scholar
10. (a) Gao, M. Y.; Kirstein, S.; Möhwald, H.; Rogach, A. L.; Kornowski, A.; Eychmüller, A.; Weller, H. J. Phys. Chem. B 1998, 102, 8360. (b) Zhang, H.; Zhou, Z.; Yang, B.; Gao, M. Y. J. Phys. Chem. B. 2003, 107, 8.Google Scholar
11. Bao, H.; Gong, Y.; Li, Z.; Gao, M. Chem. Mater. 2004, 16(20), 3853.Google Scholar
12. Turkevich, J.; Stevenson, P. C.; Hillier, J. Discuss. Faraday Soc. 1951, 55.Google Scholar
13. Goia, D. V.; Matijevic, E. New J. Chem. 1998, 22, 1203.Google Scholar
14. Bönnemann, H.; Brijoux, W. “Advanced Catalysts and Nanostructured Materials,” (Ed. Moser, W.), Academic Press, New York, 1996, p. 165.Google Scholar
15. Green, M.; O'Brien, P. Chem. Comm. 1999, 2235.Google Scholar
16. Pileni, M. P. New J. Chem. 1998, 22, 693.Google Scholar
17. Brumer, M.; Kigel, A.; Amirav, L.; Sashchiuk, A.; Solomesch, O.; Tessler, N.; Lifshitz, E. Adv. Func. Mater. 2005, 15(7), 1111.Google Scholar
18. Park, S.-K.; Park, Y. -K.; Park, S. -E.; Kevan, L. Phys. Chem. Chem. Phys. 2000, 2(23), 5000.Google Scholar
19. Smith, A. L., Applied Infrared Spectroscopy; Wiley New York, 1979, pp. 286314.Google Scholar
20. Nakamoto, K., Infrared and Raman Spectra of Co-ordination Compounds, Wiley New York, 1986, pp. 371409.Google Scholar