Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-16T16:17:11.297Z Has data issue: false hasContentIssue false

Synthesis of Passivated Metal Nanoparticles

Published online by Cambridge University Press:  21 February 2011

Mark Green
Affiliation:
Department of Chemistry, Imperial College of Science, Technology and Medicine, South Kensington, London, W7 2AY, UK
Paul O'Brien
Affiliation:
Department of Chemistry, Imperial College of Science, Technology and Medicine, South Kensington, London, W7 2AY, UK
Get access

Abstract

Here we report the synthesis of organically passivated nanoparticles of gold, chromium and nickel. The routes involve the reduction of a metal precursor in various Lewis base solvents, which appear to affect the final nanoparticle morphology. The preparation of highly monodispersed samples can lead to the potential for further manipulation of dots into ordered 2D and 3D arrays. These colloidal thin films and crystals have potential application in magnetic data storage devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] For an interesting summary see Michael Faraday and the Royal Institution, by Thomas, J. M. and Bristol, A. H., Philadelphia and New York 1991, pp. 78.Google Scholar
[2] Henglein, A. and Giersig, M., J. Phys. Chem. B. 103, p. 9533 (1999).Google Scholar
[3] Enustun, B. V. and Turkevich, J., J. Am. Chem. Soc. 85, p. 3317 (1963).Google Scholar
[4] Turkevich, J. and Kim, G., Science 169, p. 873 (1970).Google Scholar
[5] Brust, M., Walker, M., Bethell, D., Schiffrin, D. J. and Whyman, R., J. Chem. Soc., Chem. Comm. p. 801 (1994).Google Scholar
[6] Gittens, D., Schiffrin, D. J., Nichols, R. and Bethell, D., Adv. Mater. 11, p.737 (1999).Google Scholar
[7] Murray, C. B., Norris, D. J. and Bawendi, M. G., J. Am. Chem. Soc. 115, p. 8706 (1993).Google Scholar
[8] Colvin, V. L., Schlamp, M. C. and Alivisatos, A. P., Nature 370, p. 354 (1994).Google Scholar
[9] Murray, C. B., Kagan, C. R. and Bawendi, M. G., Science 270, p. 1335 (1995).Google Scholar
[10] Guzelian, A. A., Katari, J. E. B., Banin, U., Kadavanich, A. V., Peng, X., Alivisatos, A. P., Hamed, K., Juban, E., Wolters, R. H., Arnold, C. C. and Heath, J. R., J. Phys. Chem. 100, p. 7212 (1996).Google Scholar
[11] Trindade, T. and O'Brien, P., Adv. Mater 8, p. 161 (1996).Google Scholar
[12] Green, M. and O'Brien, P., Adv. Mater 10, p. 527 (1998).Google Scholar
[13] Green, M. and O'Brien, P., J. Chem. Soc., Chem. Comm. p. 2235 (1999).Google Scholar
[14] Sun, S. and Murray, C. B., J. Appl. Phys. 85, p. 4325 (1999).Google Scholar
[15] Dinega, D. P. and Bawendi, M. G., Angew. Chem. Int. Ed. 38, p. 1788 (1999).Google Scholar
[16] Collier, C. P., Saykally, R. J., Shiang, J. J., Henrichs, S. E. and Heath, J. R., Science 277, p. 1978 (1997).Google Scholar
[17] Lutz, T., Estournes, C., Merle, J. C. and Guille, J. L., J. Alloys. Comp. 262, p. 438 (1997).Google Scholar