Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T07:34:22.405Z Has data issue: false hasContentIssue false

Superlattice Calculation in an Empirical spds* Tight-Binding Model

Published online by Cambridge University Press:  10 February 2011

R. Scholz
Affiliation:
Institut für Physik, Technische Universität Chemnitz, D-09107 Chemnitz, Germany, [email protected]
J.-M. Jancu
Affiliation:
Scuola Normale Superiore and Istituto Nazionale per la Fisica della Materia, Piazza dei Cavalieri 7, 1–56126 Pisa, Italy
F. Bassani
Affiliation:
Scuola Normale Superiore and Istituto Nazionale per la Fisica della Materia, Piazza dei Cavalieri 7, 1–56126 Pisa, Italy
Get access

Abstract

We propose an empirical tight-binding method for tetrahedrally coordinated cubic materials and apply it to group IV and III-V semiconductors, extending existing calculations by the inclusion of all five d-orbitals per atom in the basis set. The symmetry character of the conduction states at the surface of the Brillouin zone is considerably improved compared to calculations in smaller bases, and the corresponding band positions can be obtained within the experimental uncertainties. Because the distance dependence of the tight-binding parameters is derived from deformation potentials, the model is particularly suited for an investigation of strained superlattices where the states at direct or pseudo-direct conduction band minima are composed of wavefunctions of all the minima at Γ, X, and L of the constituents. Investigations of GaAs/AlAs and short-period superlattices indicate a strong mixing between the conduction band valleys in the miniband structure, and the results are in better agreement with experiments than state-of-the-art empirical pseudopotential calculations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Slater, J.C. and Koster, G.F., Phys. Rev. 94, 1498 (1954).Google Scholar
2. Chadi, D.J. and Cohen, M.L., Phys. Stat. Sol. (b) 68, 405 (1975).Google Scholar
3. Majewski, J.A. and Vogl, P., Phys. Rev. B 35, 9666 (1987).Google Scholar
4. Harrison, W.A., Electronic Structure and Properties of Solids, (Freeman, San Francisco 1980).Google Scholar
5. Vogl, P., Hjalmarson, H.P., and Dow, J.D., J. Phys. Chem. Solids 44, 365 (1983).Google Scholar
6. Chang, Y.C. and Aspnes, D.E., Phys. Rev. B 41, 12002 (1990).Google Scholar
7. Jancu, J.-M., Scholz, R., Beltram, F. and Bassani, F., Phys. Rev. B, in press.Google Scholar
8. Mäder, K.A. and Zunger, A.. Phys. Rev. B 50, 17393 (1994).Google Scholar
9. Wood, D.M. and Zunger, A.. Phys. Rev. B 53, 7949 (1996).Google Scholar
10. Semiconductors: Group IV Elements and IH-V Compounds, ed. by Madelung, O. (Springer, Berlin 1991)Google Scholar
11. Batey, J. and Wright, S.L., Surf. Sci., 174, 320 (1986).Google Scholar
12. Holtz, M., Cingolani, R., Reimann, K., Muralidharan, R., Syassen, K., and Ploog, K., Phys. Rev. B 41, 3641 (1990);Google Scholar
Ge, W., Schmidt, W.D., Sturge, M.D., Pfeiffer, L.N., and West, K.W., J. Lumin. 59, 163 (1994);Google Scholar
Nakayama, M., Imazawa, K., Suyama, K., Tanaka, I., and Nishimura, H., Phys. Rev. B 49, 13564 (1994).Google Scholar
13. Li, G., Jiang, D., Han, H., Wang, Z., and Ploog, K., Phys. Rev. B 40, 10430 (1989).Google Scholar
14. Cingolani, R., Baldassare, L., Ferrara, M., Lugarà, M., and Ploog, K., Phys. Rev. B 40, 6101 (1989).Google Scholar
15. Wei, S.-H. and Zunger, A., J. Appl. Phys. 63, 5794 (1988).Google Scholar
16. Fenigstein, A., Finkman, E., Bahir, G., and Schachman, S.E., Appl. Phys. Lett. 69, 1759 (1996).Google Scholar
17. Di Carlo, A., this volumeGoogle Scholar