Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T18:38:23.188Z Has data issue: false hasContentIssue false

Substrate Engineering with Fluoride Buffer Layers on Si

Published online by Cambridge University Press:  22 February 2011

A. P. Taylor
Affiliation:
Physic Dept. and Ctr. for Integrated Electronics, Rensselaer Polytechnic Institute, Troy, NY 12180
W. Li
Affiliation:
Physic Dept. and Ctr. for Integrated Electronics, Rensselaer Polytechnic Institute, Troy, NY 12180
Q.-F. Xiao
Affiliation:
Physic Dept. and Ctr. for Integrated Electronics, Rensselaer Polytechnic Institute, Troy, NY 12180
L. J. Schowalter
Affiliation:
Physic Dept. and Ctr. for Integrated Electronics, Rensselaer Polytechnic Institute, Troy, NY 12180
Get access

Abstract

Here, we report on our efforts to engineer Si substrates for growth of compound semiconductors through the use of suitable epitaxial buffer layers of CaF2, SrF2, and BaF2 using a recently installed dual growth chamber MBE system. We have also developed new graphite-heater K-cells which have demonstrated reliable, high temperature deposition of the fluorides with excellent uniformity across substrates up to 6 inches in diameter. Excellent epitaxial quality (Xmin<5.0%) and smooth surface morphologies have been achieved for epitaxial CaF2 and SrF2 grown directly on Si (111) and BaF2 grown directly on Si (001). The BaF2 is (111) oriented on the Si (001) substrates with one of the {110} planes of the BaF2 aligned with the (110) plane in the Si (001). PbS1−xSex of excellent epitaxial quality has recently been demonstrated on the BaF2 (111)/Si (001) films. Comparable epitaxial quality has been demonstrated for CaF2 grown on Si (001) substrates using a two step growth method. We also report on preliminary results on epitaxial mixed fluoride growth on Si (111) and Si (001) substrates.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Schowalter, L. J., Hashimoto, S., Smith, G. A., Gibson, W. M., Lewis, N., Hall, E. L., and Sullivan, P. W., Mat. Res. Soc. Symp. Proc. Vol. 102 (Materials Research Society, Pittsburgh, 1988) p. 449.Google Scholar
[2] Schowalter, L. J., Ayers, J. E., Ghandhi, S. K., Hashimoto, Shin, Gibson, W. M., LeGoues, F. K., and Claxton, P. A., Mat. Res. Soc. Symp. Proc. Vol. 106 (Materials Research Society, P ittsburgh, 1990) p. 527.Google Scholar
[3] Hashimoto, S., Peng, J. -L., Gibson, W. M., Schowalter, L. J., and Fathauer, R. W., Appl. Phys. Lett. 47, 1071 (1955).Google Scholar
[4] Ishizaka, A. and Shiraki, Y., J. Electrochem. Soc, 133, 666 (1988).CrossRefGoogle Scholar
[5] Taylor, A. P., Li, W., Xiao, Q. -F., Schowalter, L. J., Mat. Res. Soc, Si MBE Symp., Spring, (1991).Google Scholar
[6] Schowalter, L. J., Fathauer, R. W., Goehner, R. P., Turner, L. G., DeBlois, R. W., Hashimoto, S., Peng, J.-L., Gibson, W. M., and Krusius, J. P., J. Appl. Phys. 58, 302 (1985).Google Scholar
[7] Asano, T., Ishiwara, H., Kaifu, N., Jpn. J. Appl. Phys. 22, 1474 (1983).CrossRefGoogle Scholar
[8] Chu, T. K., Huber, C., Santiago, F., Martinez, A., Zogg, H., Blunier, S., Maissen, A., Taylor, A. P., and Schowalter, L.J., Mat. Res. Soc. Symp. Proc. (Materials Research Society, Anaheim, 1991), to be published.Google Scholar
[9] Fathauer, R. W. and Schowalter, L. J., Appl. Phys. Lett., 45, 519 (1984).Google Scholar
[10] Tasker, P. W., J. Phys. (Paris), 41, C6 (1980).Google Scholar
[11] Morimoto, Y., Matsumoto, S., Sudo, S., and Yoneda, K., Mat. Res. Soc. Symp. Proc Vol. 116, (Materials Research Society, Pittsburgh, 1988) p. 413.Google Scholar
[12] Sullivan, P. W., Farrow, R. F. C., and Jones, G. R., J. Crystal Growth 60, 403 (1952).CrossRefGoogle Scholar