Article contents
A Study on CVD TaN as a Diffusion Barrier for Cu Interconnects
Published online by Cambridge University Press: 17 March 2011
Abstract
Tantalum nitride (TaN) films were deposited using pentakis-diethylamido-tantalum [PDEAT, Ta(N(C2H5)2)5] as a precursor. During film growth, N- and Ar-ion beams with an energy of 120 eV were supplied in order to improve the film quality. In case of thermallydecomposed films, the deposition rate is controlled by the surface reaction up to about 350 °C with an activation energy of about 1.07 eV. The activation energy of the surface reaction controlled regime is decreased to 0.26 eV when the Ar-beam is applied. However, in case of Nbeam bombarded films, the deposition is controlled by the precursor diffusion in gas phase at the whole temperature range. By using Ar-beam, the resistivity of the film is drastically reduced from approximately 10000 µω-cm to 600 µω-cm and the density of the film is increased from 5.85 g/cm3 to 8.26 g/cm3, as compared with thermally-decomposed film. The use of N-beam also considerably lowers the resistivity of films (∼ 800 µω-cm) and increases the density of the films (7.5 g/cm3). Finally, the diffusion barrier properties of 50-nm-thick TaN films for Cu were investigated aftre annealing by X-ray diffraction analysis. The films deposited using N- and Arbeam showed the Cu3Si formation after annealing at 650 °C for 1 hour, while thermallydecomposed films showed Cu3Si peaks firstly after annealing at 600 °C. It is considered that the improvements of the diffusion barrier performance of the films deposited using N- and Ar-ion beam are the consequence of the film densification resulting from the ion bombardment during film growth.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2000
References
- 4
- Cited by