Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T02:39:07.546Z Has data issue: false hasContentIssue false

Study of Ta as a Diffusion Barrier in Cu/SiO2 Structure

Published online by Cambridge University Press:  17 March 2011

J. S. Pan
Affiliation:
Institute of Materials Research & Engineering, 3 Research Link, Singapore 117602
A. T. S. Wee
Affiliation:
Department of Physics, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260
C. H. A. Huan
Affiliation:
Department of Physics, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260
J. W. Chai
Affiliation:
Institute of Materials Research & Engineering, 3 Research Link, Singapore 117602
J. H. Zhang
Affiliation:
School of Mechanical and Production Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798
Get access

Abstract

Tantalum (Ta) thin films of 35 nm thickness were investigated as diffusion barriers as well as adhesion-promoting layers between Cu and SiO2 using X-ray diffractometry (XRD), Scanning electron microscopy (SEM), Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS). After annealing at 600°C for 1h in vacuum, no evidence of interdiffusion was observed. However, XPS depth profiling indicates that elemental Si appears at the Ta/SiO2 interface after annealing. In-situ XPS studies show that the Ta/SiO2 interface was stable until 500°C, but about 32% of the interfacial SiO2 was reduced to elemental Si at 600°C. Upon cooling to room temperature, some elemental Si recombined to form SiO2 again, leaving only 6.5% elemental Si. Comparative studies on the interface chemical states of Cu/SiO2 and Ta/SiO2 indicate that the stability of the Cu/Ta/SiO2/Si system may be ascribed to the strong bonding of Ta and SiO2, due to the reduction of SiO2 through Ta oxide formation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Reference:

1. Pai, P. L. and Ting, C. H., IEEE Electron Device Lett. 10(1989)423.10.1109/55.34730Google Scholar
2. Donnelly, V. M. and Gross, M. E., J. Vac. Sci. Technol. A 11(1993)66.10.1116/1.578721Google Scholar
3. Chiou, J. C., Juang, K. C., Chen, M. C., J. Electrochem. Soc. 142(1995)177.10.1149/1.2043861Google Scholar
4. Murarka, S. P., Mater. Sci. and Eng. R 19(1997)87.10.1016/S0927-796X(97)00002-8Google Scholar
5. Takeyama, M., Noya, A., Sakanishi, K., Seki, H. and Sasaki, K., Jpn. J. Appl. Phys. 35(1996)4027.10.1143/JJAP.35.4027Google Scholar
6. Kwak, M. Y., Shin, D. H., Kang, T. W., Kim, K. N., Jpn. J. Appl. Phys. 38(1999)5792.10.1143/JJAP.38.5792Google Scholar
7. Kwak, M. Y., Shin, D. H., Kang, T. W., Kim, K. N., Thin Solid Films 339(1999)290.10.1016/S0040-6090(98)01074-8Google Scholar
8. Kolawa, E., Chen, J. S., Reid, J. S., Pokela, P. J. and Nicolet, M. A., J. Appl. Phys. 70(1991)1369.10.1063/1.349594Google Scholar
9. Holloway, K., Fryer, P. M., Cabral, C. Jr., Harper, J. M. E., Bailey, P. J. and Kelleher, K. H., J. Appl, Phys. 71(1992)5433.10.1063/1.350566Google Scholar
10. Jang, S. Y., Lee, S. M. and Baik, H. K., J. Mater. Sci.: Mater. Electron. 7(1996)271.Google Scholar
11. Stavrev, M., Wenzel, C., Möller, A., and Drescher, K., Appl. Surf. Sci. 91(1995)257.10.1016/0169-4332(95)00128-XGoogle Scholar
12. Min, K. H., Chun, K. C., and Kim, K. B., J. Vac. Sci. Technol. B 14(1996)3263.10.1116/1.588818Google Scholar
13. Yoon, D. S., Baik, H. K., and Lee, S. M., J. Vac. Sci. Technol. B 17(1999)174.10.1116/1.590532Google Scholar
14. Wang, S. Q., Suther, S., Hoeflich, C. and Burrow, B. J., J. Appl. Phys. 73(1993)2301.10.1063/1.353135Google Scholar
15. Chang, J. C. and Chen, M. C., Thin Solid Films 322(1998)213.10.1016/S0040-6090(97)00914-0Google Scholar
16. Murarka, S. P., VLSI Technology, 2nd edn., Sze, S. M. (Ed.), McGraw-Hill, Singapore, 1988, p 375.Google Scholar
17. Moulder, J. F., Stickle, W. F., Sobol, P. E., and Bomben, K. D., Handbook of X-ray Photoelectron Spectroscopy, Physical Electronics, Inc., Eden Prairie, MN, 1995.Google Scholar
18. Taubenblatt, M. A. and Helms, C. R., J. Appl. Phys. 53 (1982)6308.10.1063/1.331551Google Scholar