Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T09:09:04.890Z Has data issue: false hasContentIssue false

Structural, Magnetic Properties of the Electrochemically Deposited Arrays of Nickel Nanowires

Published online by Cambridge University Press:  21 February 2011

H.R. Khan
Affiliation:
FEM, Materials Physics Department, 73525 Schwaebisch Gmuend, Germany
K. Petrikowski
Affiliation:
FEM, Materials Physics Department, 73525 Schwaebisch Gmuend, Germany
Get access

Abstract

The room temperature structural, magnetization and magnetoresistive properties of Ni-nanowires of diameters 18, 30 and 78 nm and various lengths, fabricated by electrochemical deposition of Ni in the nanopores of anodic alumina, are investigated. The crystallographic orientation depends on the diameter of nanowires. Nanowires show perpendicular magnetic anisotropy and enhanced coercivity (Hc) and remanent magnetization (Mr) values of up to 500 Oe and 50% respectively. An electrodeposited Ni-layer (5 μm) on copper substrate shows in plane magnetic anisotropy and the Hc and Mr values are 97 Oe and 37%. Ni-nanowires and Ni-layer show an anisotropic magnetoresistive behaviour.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gibson, G.A., Smyth, J.F. and Schultz, S., IEEE Trans. Magn. 27 (1991) 5787 Google Scholar
2. Wei, M.S. and Chou, S.Y., J. Appl. Phys. 76 (1994) 6679 Google Scholar
3. New, R.M.H., Pease, R.F.W. and White, R.L., J. Vac. Sci. Technol. 12 (1994) 3196 Google Scholar
4. Kent, A.D., Molnar, S. von, Gider, S. and Awschalom, D.D., J. Appl. Phys. 76 (1994) 6656 Google Scholar
5. Smyth, J.F., Schultz, S., Kern, D., Schmid, H. and Yee, D., J. Appl. Phys. 63 (1988) 4237 Google Scholar
6. Lodder, J.C. and Cheng-Zhang, L., IEEE Trans. Magn. 25 (1989) 4171 Google Scholar
7. Arai, K.I., Ishiyama, K., Ohoka, Y. and Kang, H.W., J. Magn. Soc. Jpn. 13 (1989) 789 Google Scholar
8. Mawlawi, D. Al, Coombs, N. and Moskovits, M., J. Appl. Phys. 70 (1991) 4421 Google Scholar
9. Whitney, T.M., Jiang, J.S., Searson, P.C. and Chien, C.L., Science 261 (1993) 1316 Google Scholar
10. Hong, K. and Giordano, N., Phys. Rev. B 51 (1995)9855 Google Scholar
11. Blundell, S.J., Shearwood, C., Gester, M., Baird, M.J., Bland, J.A.C. and Ahmed, H., J. Magn. Magn. Mater. 135 (1994) L 17 Google Scholar
12. Maeda, A., Kume, M., Ogura, T., Kuroki, K., Yamada, T., Nishikawa, M. and Harada, Y., J. Appl. Phys. 76 (1994) 6667 Google Scholar
13. Khan, H.R., Loebich, O. and Rauscher, G., Thin Solid Films 275 (1996) 207209 Google Scholar
14. Khan, H. R. and Petrikowski, K., J. Magn. Magn. Mater. (In Press)Google Scholar
15. Iwasaki, S. and Ouchi, K., IEEE Trans. Magn. MAG–13 (1977) 1272 Google Scholar
16. Shiraki, M., Wakui, Y., Tokashima, T., Tsuya, N., Trans. Magn. MAG–21 (1985) 1465 Google Scholar
17. Tsuya, N., Tokashima, T., Shiraki, M., Wakui, Y., Saito, Y., Nakamura, H. and Harada, Y., IEEE Trans. Magn. MAG–24 (1988) 2661 Google Scholar
18. Scherrer, P., Nachr. Göttinger Gesell., vol. 98, Zwigmondys, Kolloidchemie, 3td edn., 1918, 394 Google Scholar