Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-19T22:56:12.015Z Has data issue: false hasContentIssue false

Stress Metrology : The challenge for the next generation of engineered wafers

Published online by Cambridge University Press:  17 March 2011

Antoine Tiberj
Affiliation:
Soitec, Parc technologique des Fontaines, 38190 Bernin, France
Vincent Paillard
Affiliation:
LPST, Paul Sabatier University, 118 route de Narbonne, 31062 Toulouse Cedex 4, France
Cécile Aulnette
Affiliation:
Soitec, Parc technologique des Fontaines, 38190 Bernin, France
Nicolas Daval
Affiliation:
Soitec, Parc technologique des Fontaines, 38190 Bernin, France
Konstantin K. Bourdelle
Affiliation:
Soitec, Parc technologique des Fontaines, 38190 Bernin, France
Myriam Moreau
Affiliation:
Jobin-Yvon, 231 rue de Lille, 59650 Villeneuve d'Ascq, France
Mark Kennard
Affiliation:
Soitec, Parc technologique des Fontaines, 38190 Bernin, France
Ian Cayrefourcq
Affiliation:
Soitec, Parc technologique des Fontaines, 38190 Bernin, France
Get access

Abstract

Raman spectroscopy is a powerful and versatile technique for stress measurements in complex stacks of thin crystalline layers at macroscopic and microscopic scales. Using such a technique we show that thick SiGe layers epitaxially grown using graded buffer method are fully relaxed (>95%) at a macroscopic scale but exhibit a small strain modulation at a microscopic scale. For the first time we report the results of Raman micro-mapping of stress distribution in SGOI wafers produced by Smart Cut™ technology. We conclude that Smart Cut™ is a unique method to manufacture the next generation of engineered wafers that can combine strained and/or relaxed SiGe alloys, Si and Ge films, while keeping their initial strain properties at both scales. It is important to develop Raman spectroscopy tool for in-line process control in fabrication of strained Silicon On Insulator (sSOI) wafers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Celler, G.K. and Cristoloveanu, S., J. Appl. Phys. 93, 4955 (2003).Google Scholar
2 Ghyselen, B., Wafer Bonding VII : Science, Technology and Applications, p. 96, ECS Proceedings (PV 2003-19, ISBN 1-56677-402-0), Pennington, NJ (2003).Google Scholar
3 Pickering, C. and Carline, R.T., J. Appl. Phys. 75, 4642 (1994).Google Scholar
4 Mukerjee, S. and Venkataraman, V., Appl. Phys. Lett. 77, 3529 (2000).Google Scholar
5 Biegelsen, D.K., Phys. Rev. Lett. 32, 1196 (1974).Google Scholar
6 Hornstra, J. and Bartels, W.J., J. Cryst. Growth 44, 513 (1978).Google Scholar
7 Bartels, W.J. and Nijman, W., J. Cryst. Growth 44, 518 (1978).Google Scholar
8 Fatemi, M. and Stahlbush, R.E., Appl. Phys. Lett. 58, 825 (1991).Google Scholar
9 Mooney, P.M. et al. , AIP Conference Proceedings 683, 213 (2003).Google Scholar
10 Cohen, G.M. et al. , Appl. Phys. Lett. 75, 787 (1999).Google Scholar
11 Tiberj, A., Fraisse, B., Blanc, C., Contreras, S., Camassel, J., Phys. Stat. Sol. (c) 0, 1060 (2003).Google Scholar
12 Wolf, I. De, Semicond. Sci. Technol. 11, 139 (1996).Google Scholar
13 Anastassakis, E., Pinczuk, A., Burstein, E., Pollak, F.H. and Cardona, M., Solid State Comm. 8, 133 (1970).Google Scholar
14 Cerdeira, F., Buchenauer, C.J., Pollak, F.H. and Cardona, M., Phys. Rev. B 5, 580 (1972).Google Scholar
15 Anastassakis, E., Cantarero, A. and Cardona, M., Phys. Rev. B 41, 7529 (1990).Google Scholar
16 Anastassakis, E., J. Appl. Phys. 82, 1582 (1997).Google Scholar
17 Paillard, V., Laguna, M.A., Puech, P., Temple-Boyer, P., Caussat, B., Couderc, J.P., Mauduit, B. De, Appl. Phys. Lett. 73, 17181720 (1998).Google Scholar
18 Renucci, J.B., Tyte, R.N. and Cardona, M., Phys. Rev. B 11, 3885 (1975).Google Scholar
19 Tsang, J.C., Mooney, P.M., Dacol, F. and Chu, J.O, J. Appl. Phys. 75, 8098 (1994).Google Scholar
20 Groenen, J. et al. , Appl. Phys. Lett. 71, 3856 (1997).Google Scholar
21 Chen, H. et al. , Phys. Rev. B 65, 233303 (2002).Google Scholar
22 Sawano, K., Koh, S., Shiraki, Y., Usami, N., Nakagawa, K., App. Phys. Lett. 83, 4339 (2003).Google Scholar
23 Hsu, J.W.P., Fitzgerald, E.A., Xie, Y.H., Silverman, P.J. and Cardillo, M.J., Appl. Phys. Lett. 61, 1293 (1992).Google Scholar
24 Hartmann, J.M., Gallas, B., Zhang, J. and Harris, J.J., Semicond. Sci. Technol. 15, 370 (2000).Google Scholar
25 Shiryaev, S.Y., Jensen, F. and Petersen, J.W., Appl. Phys. Lett. 64, 3305 (1994).Google Scholar
26 Kummer, M., Vögeli, B., Meyer, T. and Känel, H. Van, Phys. Rev. Lett. 84, 107 (2000).Google Scholar
27 Spila, T., Desjardins, P., D'Arcy-Gall, J., Twesten, R.D. and Greene, J.E., J. Appl. Phys. 93, 1918 (2003).Google Scholar
28 Seng, H.L., Osipowicz, T., Sum, T.C., Tok, E.S., Breton, G., Woods, N.J. and Zhang, J., Appl. Phys. Lett. 80, 2940 (2002).Google Scholar
29 Gray, M.H., Hsu, J.W.P., Giovane, L. and Bulsara, M.T., Phys. Rev. Lett. 86, 3598 (2001).Google Scholar
30 Ghyselen, B. et al. , Proceedings of the ICSi3 Conference, Santa Fe (NM, USA), Mars 2003.Google Scholar
31 Ghyselen, B. et al. , Solid State Electronics, in press (August 2004).Google Scholar
32 Tiberj, A., Camassel, J., Planes, N., Stoemenos, Y., Moriceau, H. and Rayssac, O., SOI Technology and Devices XI, p. 117, ECS Proceedings (PV 2003-05, ISBN 1-56677-375-X), Pennington, NJ (2003).Google Scholar
33 Fischetti, M.V., Gamiz, F. and Hänsch, W., J. Appl. Phys. 92, 7320 (2002).Google Scholar