Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T02:41:37.923Z Has data issue: false hasContentIssue false

Strained Channel Transistor Using Strain Field Induced By Source and Drain Stressors

Published online by Cambridge University Press:  17 March 2011

Yee-Chia Yeo
Affiliation:
Silicon Nano Device Lab, Dept. of Electrical & Computer Engineering, National University of Singapore, Singapore, 117576
Jisong Sun
Affiliation:
Silicon Nano Device Lab, Dept. of Electrical & Computer Engineering, National University of Singapore, Singapore, 117576
Eng Hong Ong
Affiliation:
Silicon Nano Device Lab, Dept. of Electrical & Computer Engineering, National University of Singapore, Singapore, 117576
Get access

Abstract

We perform a theoretical evaluation of the strain field in a p-channel transistor with silicongermanium (Si1−yGey) stressors in the source and drain regions. The strain field comprises a lateral compressive strain component and a vertical tensile strain component. The lateral strain component is larger in magnitude and more uniformly distributed as compared to the vertical strain component. The impact of transistor design parameters, such as the Ge mole fraction y in the stressors, the spacing L between stressors, the stressor depth, and the raised stressor height, on the strain field are investigated. Hole mobility enhancement larger than 30% is achievable wth L = 50 nm and y = 0.15. More aggressive mobility enhancement targets may be achievable by reducing the stressor spacing and employing a stressor with a larger lattice mismatch with the Si channel.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Welser, J., Hoyt, J. L., and Gibbons, J. F., Technical Dig. International Electron Device Meeting, Dec. 1992, San Francisco CA, pp. 10001002.Google Scholar
2. Rim, K., Koester, S., Hargrove, M., Chu, J., Mooney, P. M., Ott, J., Kanarsky, T., Ronsheim, P., Ieong, M., Grill, A., and H.-S Wong, P., 2001 Symp. VLSI Technology, Dig. Technical Papers, pp. 5960.Google Scholar
3. Shimizu, A., Hachimine, K., Ohki, N., Ohta, H., Koguchi, M., Nonaka, Y., Sato, H., and Ootsuka, F., Technical Dig. International Electron Device Meeting, Dec. 2001, Washington DC, pp. 433436.Google Scholar
4. Ge, C.-H., Lin, C.-C., Ko, C.-H., Huang, C.-C., Huang, Y.-C., Chan, B.-W., Perng, B.-C., Sheu, C.-C., Tsai, P.-Y., Yao, L.-G., Wu, C.-L., Lee, T.-L., Chen, C.-J., Wang, C.-T., Lin, S.-C., Yeo, Y.-C., and Hu, C., Technical Dig. International Electron Device Meeting, Dec. 2003, Washington DC, pp. 7376.Google Scholar
5. Ghani, T., Armstrong, M., Auth, C., Bost, M., Charvat, P., Glass, G., Hoffmann, T., Johnson, K., Kenyon, C., Klaus, J., McIntyre, B., Mistry, K., Murthy, A., Sandford, J., Silberstein, M., Sivakumar, S., Smith, P., Zawadzki, K., Thompson, S., and Bohr, M., Technical Dig. International Electron Device Meeting, Dec. 2003, Washington DC, pp. 978980.Google Scholar
6. Thompson, S. E., Armstrong, M., Auth, C., Cea, S., Chau, R., Glass, G., Hoffman, T., Klaus, J., Ma, Z., Mcintyre, B., Murthy, A., Obradovic, B., Shifren, L., Sivakumar, S., Tyagi, S., Ghani, T., Mistry, K., Bohr, M., and El-Mansy, Y., IEEE Elect. Dev. Lett. 25, pp. 191 (2004).Google Scholar
7. Gannavaram, S., Pesovic, N., and Ôztürk, M. C., Technical Dig. International Electron Device Meeting, Dec. 2000, San Francisco CA, pp. 437440.Google Scholar
8. Ranade, P., Takeuchi, H., Lee, W.-C., Subramanian, V., and King, T.-J., IEEE Trans. Electron Devices, 49, 1436 (2002).Google Scholar
9. Jain, S. C., Harker, A. H., Atkinson, A., and Pinardi, K., J. Appl. Phys. 78, 1630 (1995).Google Scholar
10. Benabbas, T., Androussi, Y., and Lefebvre, A., J. Appl. Phys. 86, 1945 (1999).Google Scholar
11. Liu, G. R. and Quek, S. S., Semiconductor Science Technolology 17, 630 (2002).Google Scholar
12. Kumagai, Y., Ohta, H., Miura, H., Ito, F., Maekawa, K., and Shimizu, A., Extended Abstracts of the 2002 International Conf. on Solid State Devices and Materials, Nagoya, Japan, 2002, pp. 1415.Google Scholar
13. International Technology Roadmap for Semiconductors (2003 update); available at http://public.itrs.net Google Scholar