Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-17T16:00:35.292Z Has data issue: false hasContentIssue false

Stabilization of Metal Alkoxides (M = BA, CU) by Alkamolamines

Published online by Cambridge University Press:  25 February 2011

L. G. Hubert-Pfalzgraf
Affiliation:
laboratoire de Chimie Moléculaire, URA CNRS, Université de Nice-Sophia Antipolis, BP 71, 06108 Nice Cedex 2, France
M. C. Massiani
Affiliation:
laboratoire de Chimie Moléculaire, URA CNRS, Université de Nice-Sophia Antipolis, BP 71, 06108 Nice Cedex 2, France
J. C. Daran
Affiliation:
Laboratoire de Métaux de Transition, URA CNRS, 75230 Paris, France.
J. Vaissermann
Affiliation:
Laboratoire de Métaux de Transition, URA CNRS, 75230 Paris, France.
Get access

Abstract

Alcohol interchange reactions between barium and copper(II) methoxides and triethanolamine give Ba(teaH-l)2,2EtOH and [Cu(teaH-2)]4,3tea, respectively. Triethanolamine appears as a tetradentate ligand -chelating in the case of barium, bridging-chelating for copper - and thus ensures high coordination numbers for the metals - eight for Ba and five for Cu - thus decreasing their susceptibility to hydrolysis. The remaining hydroxyl functionality on the coordinated triethanolamine moities favors the formation of solvates with alcohols via H-bonding.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hubert-Pfalzgraf, L. G., New J. Chem. 11, 663 (1987).Google Scholar
2. Katayama, S. and Sekine, M., Better Ceramics through Chemistry IV, 1, 897 (1990); J. Mater. Chem. 1 1031 (1991).Google Scholar
3. Selvarag, U., Prasadarao, A. V., Komarneni, S. and Roy, R., Mater. Let. 12, 311 (1991).Google Scholar
4. Tohge, N., Tatsumisago, M. and Minam, T., J. Non Cryst. Solids 121, 443 (1990).Google Scholar
Monde, T., Kosuka, H. and Sakka, S., Chem. Lett. 287 (1988).Google Scholar
5. Takahashi, Y. and Matsuoka, Y., J. Mater. Sci. 23, 2259 (1988).CrossRefGoogle Scholar
Ocana, M. and Matijevic, E., J. Mater. Res. 5, 1083 (1990).Google Scholar
6. Caulton, K. G., Chisholm, M. H., Drake, S. R. and Folting, K., J. Chem. Soc. Chem. Commun. 1990, 1349;Google Scholar
Tesh, K. F. and Hanusa, T. P., J. Chem. Soc. Chem. Commun. 1991, 879.Google Scholar
Thule, T.P., Raghavan, S. and Risbud, S.H., J. Am. Ceram. Soc. 70, C108 (1987).Google Scholar
7. Singh, J. V., Baranwal, B. P. and Mehrotra, R. C., Z. Anorg. Allgem. Chem. 477, 235 (1981).CrossRefGoogle Scholar
8. Goel, S. C., Kramer, K. S., Gibbons, P. C. and Buhro, W. E., Inorg. Chem. 28, 3620 (1989).Google Scholar
9. Goel, S., Kramer, K. S., Chiang, M. Y. and Buhro, W. E., Polyhedron 9, 61 (1990).Google Scholar
10. Poncelet, O., Hubert-Pfalzgraf, L. G., Toupet, L. and Daran, J. C., Polyhedronlu, 2045 (1991).CrossRefGoogle Scholar
11. teaH-n n = 1, 2, 3 indicates the number of hydroxyl functionalities involved in covalent bonding with the metal.Google Scholar
12. Sirio, C., Poncelet, O., Hubert-Pfalzgraf, L. G., Daran, J. C. and Vaissermann, J., Polyhedron 1, 177 (1992),CrossRefGoogle Scholar
13. Healy, M. D. and Barron, A. R., J. Am. Chem. Soc. 111, 398 (1989).Google Scholar
14. Wang, S., Inorg. Chem. 30, 2252 (1991).Google Scholar
15. Chen, H., Olmstead, M. M., Shoner, S. C. and Power, P. P., J. Chem. Soc. Dalton Trans 1992, 451.Google Scholar
16. Menge, W. M. P. B. and Verkade, J. G., Inorg. Chem. 30, 4628 (1991);CrossRefGoogle Scholar
Naiini, A. A., Menge, W. M. P.B. and Verkade, J. G., Inorg. Chem. 30 5009 (1991).Google Scholar
17. Vaartstra, B., Huffman, J. C., Gradeff, P. S., Hubert-Pfalzgraf, L. G., Daran, J. C., Parraud, S., Yunlu, K. and Caulton, K. G., Inorg. Chem. 29, 3126 (1990).CrossRefGoogle Scholar
18. Kober, F., Zeit. Chem. 20, 49 (1980);Google Scholar
Gar, T.K. and Mirovov, V.F., Organomet. USSR, 1. 142 (1988).Google Scholar