Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T18:02:11.166Z Has data issue: false hasContentIssue false

Spatial Inhomogeneities of the Luminescence and Electrical Properties of Mbe Grown GaAs on Si

Published online by Cambridge University Press:  28 February 2011

G.A. Reid
Affiliation:
Hewlett-Packard, P.O.Box 10350, Palo Alto, CA 94304
K. Nauka
Affiliation:
Hewlett-Packard, P.O.Box 10350, Palo Alto, CA 94304
S.J. Rosner
Affiliation:
Hewlett-Packard, P.O.Box 10350, Palo Alto, CA 94304
S.M. Koch
Affiliation:
Stanford Electronics Lab, Stanford University, CA 94305
J.S. Harris Jr.
Affiliation:
Stanford Electronics Lab, Stanford University, CA 94305
Get access

Abstract

Spatial homogeneity of the luminescence and electrical properties of gallium arsenide films grown directly on silicon substrates (GaAs/Si) by molecular beam epitaxy (MBE) have been investigated with microscopic scanning photoluminescence (PL), cathodoluminescence (CL), electron beam induced current (EBIC), and scanning deep level transient spectroscopy (SDLTS). It was found that GaAs/Si exhibits a highly nonuniform lateral distribution of speckled appearance in CL and PL images. These centers are also responsible for short minority carrier lifetimes as determined by EBIC. The observed nonuniformities appear to be a fundamental material property which is not altered by post-growth annealing. Correlations between the luminescence and electrical inhomogeneities and structural defects will be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Petroff, P.M., Lang, D.V., Appl. Phys. Lett. 31, 60 (1977).Google Scholar
2 Heydenreich, J., Breitenstein, O., Inst.Phys.Conf.Ser. No.76, p.319, London 1985.Google Scholar
3 Reid, G.A., Nauka, K., Rosner, S.J., Laderman, S.S., Proc.22nd Ann.Conf. of the Microbeam Analysis Soc. 1987, ed. Geiss, R.H., S.F. Press 1987.Google Scholar
4 Nauka, K., Reid, G.A., Graham, R.J., to be published.Google Scholar
5 Marek, J., Elliot, A.G., Wilke, V., Geiss, R., Appl.Phys.Lett. 49, 1732 (1986).Google Scholar
6 see J.Spence, C.H., “Experimental High-Resolution Electron Microscopy”, Clarendon Press, Oxford 1981.Google Scholar
7 Davison, S.M., J. Microscopy 110, 177 (1977); C.C.Shen, K.P.Pande, G.L.Pearson, J.Appl.Phys.5, 1236 (1982).Google Scholar
8 Yacobi, B.G., Zemon, S., Norris, P., and Jagannath, C., Appl. Phys. Lett. 51, 2236 (1987)Google Scholar
9 Neumark, G.F., Kosai, K., Semiconductors and Semimetals Vol. 19, p. 1, Academic Press 1983.Google Scholar
10 Martin, G.M., Mitonneau, A., Mircea, A., Electron.Lett. 13, 191 (1977).Google Scholar
11 Lang, D.V., Cho, A.Y., Gossard, A.C., Ilegems, M., Wiegmann, W., J.Appl.Phys. 47, 2558 (1976).Google Scholar
12 Heinke, W., Queisser, H.J., Phys.Rev.Lett. 33, 18 (1974).Google Scholar
13 Show, D.A., Thornton, P.R., J.Material.Sci. 3, 507 (1968).Google Scholar
14 Chin, A.K., Caruso, R., Young, M.S.S., Neida, A.R. Von, J.Appl.Phys. 45, 552 (1984).Google Scholar
15 Rosner, S.J., Ph.D. Thesis, Stanford University, 1987, unpublished.Google Scholar
16 Chin, A.K., Camlibel, I., Caruso, R., M.Young, S.S., Neida, A.R. Von, J.Appl.Phys. 57, 2203 (1985).Google Scholar
17 Rumsby, R., Ware, R.M., Smith, B., Tyjberg, M., Brozel, M.R., Foulkes, E.J. in Proc. of the GaAs IC Symposium, Phoenix, AZ 1983, p. 34.Google Scholar