Article contents
Single-crystal Silicon Carbide: A Biocompatible and Hemocompatible Semiconductor for Advanced Biomedical Applications
Published online by Cambridge University Press: 01 February 2011
Abstract
Crystalline silicon carbide (SiC) and silicon (Si) biocompatibility was evaluated in vitro by directly culturing three skin and connective tissue cell lines, two immortalized neural cell lines, and platelet-rich plasma (PRP) on these semiconducting substrates. The experiments were performed specifically for the three adopted SiC polytypes, namely 3C-, 4H- and 6H-SiC, and the results were compared to those obtained for Si crystals. Cell proliferation and adhesion quality were studied using MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assays and fluorescent microscopy. For the neural cells studied AFM was also used to quantify the filopodia and lamellipodia extensions on the surface of the tested materials. Fluorescent microscopy was also used to assess platelet adhesion to the semiconductor surfaces where significantly lower values of platelet adhesion to 3C-SiC was observed compared to Si. The reported results show that SiC is indeed a more biocompatible substrate than Si. While there were some differences among the degree of biocompatibility of the various SiC polytypes tested, SiC appears to be a highly biocompatible material in vitro that is also somewhat hemocompatible. This extremely intriguing result appears to put SiC into a unique class of materials that is both bio- and hemo-compatible and is, to the best of our knowledge, the only semiconductor with this property.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2010
References
- 11
- Cited by