Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T07:50:23.642Z Has data issue: false hasContentIssue false

Shape Memory Alloys and Their Applications in Power Generation and Refrigeration

Published online by Cambridge University Press:  10 June 2013

Jun Cui*
Affiliation:
Pacific Northwest National Laboratory, Richland, WA 99354, U.S.A.
Get access

Abstract

The shape memory effect is closely related to the reversible martensitic phase transformation, which is diffusionless and involves shear deformation. The recoverable transformation between the two phases with different crystalline symmetry results in reversible changes in physical properties such as electrical conductivity, magnetization, and elasticity. Accompanying the transformation is a change of entropy. Fascinating applications are developed based on these changes. In this paper, the history, fundamentals and technical challenges of both thermoelastic and ferromagnetic shape memory alloys are briefly reviewed; applications related to energy conversion such as power generation and refrigeration as well as recent developments will be discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Schwartz, M., Encyclopedia of Smart Materials, Volume 1 (John Wiley and Sons, New York, NY, 2002).CrossRefGoogle Scholar
Kauffman, G. B. and Mayo, I., Chem.. Ed., 2(2), 121 (1997).Google Scholar
James, R.D. and Hane, K.F., Acta. Mater., 48(1), 197222 (2000).CrossRefGoogle Scholar
Cui, J., Chu, Y.S., Famodu, O.O., Furuya, Y., Hattrick-Simpers, J., James, R.D., Ludwig, A., Thienhaus, S., Wuttig, M., Zhang, Z., and Takeuchi, I., Nature Mater. 5, 286290 (2006).CrossRefGoogle Scholar
Vasil’ev, A.N., Klestov, S.A., Levitin, R.Z., and Snegirev, V.V., JETP, 82(3), 524–9 (1996).Google Scholar
Ullakko, K., Huang, J. K., Kantner, C., O’Handley, R.C., and KoKorin, V.V., Appl. Phys. Lett.., 69(13), 1966–8 (1996).CrossRefGoogle Scholar
James, R.D. and Wuttig, M., Philos. Mag. A, 77(5), 12731299 (1998).CrossRefGoogle Scholar
Cui, J. and Shield, T., J. Mech. Mate. Stru., 2(3), 505–28 (2007).CrossRefGoogle Scholar
Tickle, R., James, R.D., Shield, T., Wuttig, M., and Kokorin, V.V., IEEE Trans. Magn., 35(5), 4301–10 (1999).CrossRefGoogle Scholar
O'Handley, R.C., Allen, S.M., Paul, D.I., Henry, C.P., Marioni, M., Bono, D., Jenkins, C., Banful, A., Wager, R. in Symposium on Smart Structures and Materials, (Proc. SPIE v.5053, 2003) pp. 200–6.Google Scholar
Zheng, H., Xia, M., Lu, Y., Liu, J., and Li, J., Gongneng Cailioa/J. Funct. Mater., 35, 1614–9 (2004).Google Scholar
Kainuma, R., Oikawa, K., Ito, W., Sutou, Y., Kanomata, T., and Ishida, K., J. Mater. Chem., 18(16), 1837–42 (2008).CrossRefGoogle Scholar
DeSimone, A. and James, R.D., J. Appl. Phys., 81, 5706–8 (1997).CrossRefGoogle Scholar
O’Handley, R R.C., J. Appl. Phys.., 83(6), 3263–8 (1998).CrossRefGoogle Scholar
Stern, R.A., Willoughby, S.D., Ramirez, A., MacLaren, J.M., Cui, J., Pan, Q., James, R.D., J. Appl. Physs, 91(10), 7818–20 (2002).CrossRefGoogle Scholar
MacLaren, J.M., J. Appl. Phys., 91(10I), 7801–03 (2002).CrossRefGoogle Scholar
Fujii, S., Ishida, S., Asano, S., Mater. Trans., 46(2), 175–7 (2005).CrossRefGoogle Scholar
Entel, P., Siewert, M., Dannenberg, A., Gruner, M.E., Wuttig, M. in Magnetic Shape Memory Alloys, (Mater. Res. Soc. Symp. Proc. 1200, Boston, MA, 2010) pp. 100111.Google Scholar
Bai, J., Xu, N., Raulot, J.M., Zhang, Y.D., Esling, C., Zhao, X., and Zuo, L., J. Appl. Phys., 112(11), 114901–6 (2012).CrossRefGoogle Scholar
Krulevitch, P.A., Lee, A.P., Ramsey, P.B., Trevino, J.C., Hamilton, J., Northrup, A.M., J. MEMS, 5(4), 270–82 (1996).CrossRefGoogle Scholar
Buehler, W. J. and Goldstein, D. M., U.S. Patent No. 3403238 (1968).Google Scholar
Horton, P. F., U.S. Patent No. 4006594 (1977).Google Scholar
Warren, S. K., U.S. Patent No. 4086769 (1978).Google Scholar
Pachter, J. J., U.S. Patent No. 4150544 (1979).Google Scholar
Ridgway, M.B., U.S. Patent No. 4563876 (1986).Google Scholar
Genuth, I., "Engine on a Chip", 07 Feburary 2007, http://thefutureofthings.com/articles/49/engine-on-a-chip.html Google Scholar
Morgan, N.B., Painter, J. and Moffat, A. in Iint’l Conf on Shape Memory and Superelastic Technolgies, edited by Russel, S.M. (Proc. SMST, Pacific Grove, CA. 2003), 303310.Google Scholar
Srivastava, V., Song, Y, Bhatti, K., James, R.D., Adv. Energy Mater, 1(1), 97104 (2011).CrossRefGoogle Scholar
Crane, D.T., LaGrandeur, J.W., Harris, F., Bell, L.E., J. Elect. Mater., 38(7), 1375–81 (2009).CrossRefGoogle Scholar
Oonishi, A., Hirata, K., Yoo, B., Niguchi, N., Int. J. Appl. Electrom. 39(1-4), 1383–9 (2012).Google Scholar
Kaufmann, S., Rößler, U.K., Heczko, O., Wuttig, M., Buschbeck, J., Schultz, L. and Fähler, S., Phys. Rev. Lett. 104(14), 145702 (2010).CrossRefGoogle Scholar
Shaw, J.A., Churchill, C.B., Iadicola, M.A., Exp. Tech. 32(5), 5562 (2008).CrossRefGoogle Scholar
Hugenroth, J.J., U.S. Patent No. 6367281 (2002)Google Scholar
Mañosa, L., Planes, A., Vives, E., Bonnot, E., Romero, R., Funct. Mater. Lett. 2(2), 73–8 (2009).CrossRefGoogle Scholar
Cui, J., Wu, Y., fickler, S., Hwang, Y., Radermacher, R., Wuttig, M. and Takeuchi, I., Appl. Phys. Lett. 101, 073904 (2012)CrossRefGoogle Scholar
Pecharsky, V. K. and Gschneidner, K. A. Jr., Phys. Rev. Lett. 78(23), 4494–7 (1997).CrossRefGoogle Scholar
Hu, F., Shen, B., and Sun, J., Appl. Phys. Lett. 76(23), 3460–2 (2000).CrossRefGoogle Scholar
Marcos, J., Planes, A., Mañosa, L., Casanoa, F., Batlle, X., Labarta, A., Martinez, B., Phys. Rev. B 66, 224413–8 (2002).CrossRefGoogle Scholar
Pareti, L., Solzi, M., Albertini, F., & Paoluzi, A., Eur. Phys. J. B 32, 303307 (2003).CrossRefGoogle Scholar
Zhou, X., Li, W., Kunkel, H.P., Williams, G., J. Phys. Cond. Mater. 16(6), L3944 (2004).CrossRefGoogle Scholar
Oikawa, K., Ito, W., Imano, Y., Sutou, Y., Kainuma, R., Ishida, K., Okamoto, S., Kitakami, O., Kanomata, T., Appl. Phys. Lett. 88(12), 122507 (2006).CrossRefGoogle Scholar
Recarte, V., Párez-Landazábal, J.I., Gómez-Polo, C., Cesari, E., Dutkiewicz, J., Appl. Phys. Lett. 88(13) 132503 (2006).CrossRefGoogle Scholar
Du, J., Zheng, Q., Ren, W.J., Feng, W.J., Liu, X.G., Zhang, Z.D., J. Phys. D: Appl. Phys., 40(18), 55235526 (2007)CrossRefGoogle Scholar
Tegus, O., Bruck, E.. Zhang, Dagula, L., Buschow, K.H.J., de Boer, F.R., Physica B 319, 174192 (2002).CrossRefGoogle Scholar
Krenke, T., Duman, E., Acet, M., Wassermann, E., Moya, X., Manosa, L., Planes, A., Nature Mater., 4(6), 450454 (2005).CrossRefGoogle Scholar
Cui, J., Lemmon, J., Shield, T. and Wuttig, M., GE Global Research Technical Report, 2008GRC693, October 2008.Google Scholar
Mañosa, L., Gonzalez-Alonso, D., Planes, A., Bonnot, E., Barrio, M., Tamarit, J-L., Aksoy, D., Acet, M., Nat. Mater. 9(6) 478481 (2010).CrossRefGoogle Scholar
Castillo-Villa, P.O., Soto-Parra, D.E., Matutes-Aquino, J.A., Ochoa-Gamboa, R.A., Planes, A., Mañosa, L., González-Alonso, D., Stipcich, M., Romero, R., Ríos-Jara, D., and Flores-Zúñiga, H., Phys. Rev. B 83, 174109 (2011)CrossRefGoogle Scholar
Holtz, R.L., Sadananda, K. and Imam, M.A., Int. J. Fatigue, 21, S137–45 (1999).CrossRefGoogle Scholar
McKelvey, A.L. and Ritchie, R.O., Metall. Mater. Trans. A, 32A(3A), 731–43 (2001).CrossRefGoogle Scholar
Miyazaki, S., Imai, T., Igo, Y. and Otsuka, K., Metall. Mater. Trans. A, 17A(1), 115–20 (1986).CrossRefGoogle Scholar
Miyazaki, S., Mizukoshi, K., Ueki, T. and Sakuma, T., Mater. Sci. Eng. A-Struct., A273-275, 658–63 (1999).CrossRefGoogle Scholar
Babalik, E., Gulbaran, M., Gurmen, T. and Ozturk, S. Fracture of popliteal artery stents. J. Circ., vol. 67, no.7, Jul 2003, p.643645.Google Scholar
Duda, S. H., Pusich, B., Richter, G., Landwehr, P., Oliva, V. L., Tielbeek, A., Wiesinger, B., Hak, J. B., Tielemans, H., Ziemer, G., Cristea, E., Lansky, A. and Bérégi, J. P., Sirolimuseluting stents for the treatment of obstructive superficial femoral artery disease: six-month results. Circulation, vol. 106, no.12, Sep. 2002, p.1505–9.CrossRefGoogle Scholar
Roberts, A. C., Inferior Vena Cava Filters. Endovascular Today, Nov., 2002.Google Scholar
Scheinert, D., Scheinert, S., Sax, J., Piorkowski, C., Bräunlich, S., Ulrich, M., Biamino, G., Schmidt, A., Prevalence and clinical impact of stent fractures after femoropopliteal stenting. J. Am. Coll. Cardiol., vol. 45, no. 2, Jan. 2005, p. 312–5.CrossRefGoogle ScholarPubMed
Berg, B., BSC/Scimed Internal Report, 1997.Google Scholar
Miyazaki, S., Ohmi, Y., Otsuka, K. and Suzuki, Y., J. Phys. IV., 43(C-4), 255–60 (1982).Google Scholar
Gall, K., Yang, N., Sehitoglu, H. and Chumlyakov, Y., Int. J. Fatigue., 109(2), 189207 2001.Google Scholar
Zhu, L., Senior Design Project MATE 198B, San Jose State University, 2001 Google Scholar
Rahim, M., Frenzel, J., Frotscher, M., Steegmüller, R., Wohlschlögel, M., and Eggeler, G. in Eruropean Symposium on martensitic Transformations, 2012 Google Scholar
Ball, J.M. and James, R.D., Arch. Rational Mech. Anal. 100, 1352 (1987).CrossRefGoogle Scholar
Zhang, Z., James, R. D., and Müller, S., Acta Mater. 57, 4332–52 (2009).CrossRefGoogle Scholar
Zarnetta, R., Takahashi, R., Young, M. L., Savan, A., Furuya, Y., Thienhaus, S., Maaß, B., Rahim, M., Frenzel, J., Brunken, H., Chu, Y. S., Srivastava, V., James, R. D., Takeuchi, I., Eggeler, G., and Ludwig, A., Adv. Funct. Mater. 20, 1917–23 (2010).CrossRefGoogle Scholar
Bechtold, C., Chluba, C., Lima, D. M. R., Quandt, E., Appl. Phys. Lett.., 101(9), 091903 (2012).CrossRefGoogle Scholar
Otubo, J., Rigo, O. D., Coelho, A. A., Neto, C. M., Mei, P. R., Materials Sci. & Eng. A 481482 639642 (2008)CrossRefGoogle Scholar
Jardine, A.P., Ashbee, K.H.G., Bassett, M.J., J. Mater. Sci., 23(12), 4273–81(1988).CrossRefGoogle Scholar
Shimizu, K. and Kakashita, T., ISIJ Int., 29, 97 (1989).CrossRefGoogle Scholar
Clark, A.E., Ferromagnetic Materials (North-Holland, Amsterdam, 1980).Google Scholar