Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T02:20:39.412Z Has data issue: false hasContentIssue false

Second- and third-harmonic generation spectroscopy of coupled microcavities formed from all-silicon photonic crystals

Published online by Cambridge University Press:  01 February 2011

D. G. Gusev
Affiliation:
Department of Physics, Moscow State University, 119992 Moscow, Russia
I. V. Soboleva
Affiliation:
Department of Physics, Moscow State University, 119992 Moscow, Russia
M. G. Martemyanov
Affiliation:
Department of Physics, Moscow State University, 119992 Moscow, Russia
T. V. Dolgova
Affiliation:
Department of Physics, Moscow State University, 119992 Moscow, Russia
A. A. Fedyanin
Affiliation:
Department of Physics, Moscow State University, 119992 Moscow, Russia
O. A. Aktsipetrov
Affiliation:
Department of Physics, Moscow State University, 119992 Moscow, Russia
Get access

Abstract

The enhancement of second- and third-harmonic generation (SHG and THG) in all-silicon coupled microcavities (CMC) formed from mesoporous silicon photonic crystals are observed at the resonance of the fundamental radiation with the CMC eigenmodes. Angular splitting of the peaks in intensity spectra of SHG and THG shows monotonous dependence on magnitude of coupling between two identical microcavity spacers controlled by the reflectivity of the intermediate Bragg reflector.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bayindir, M., Kural, C., and Ozbay, E., J. Opt. A 3, pp. S184–S189, 2001.Google Scholar
2. Stanley, R., Houdre, R., Oesterle, U., Ilegems, M., and Weisbuch, C., Appl. Phys. Lett. 65, pp. 20932095, 1994.Google Scholar
3. Pavesi, L., Panzarini, G., and Andreani, L. C., Phys. Rev. B 58, pp. 1579415800, 1998.Google Scholar
4. Bisi, O., Ossicini, S., and Pavesi, L., Surf. Sci. Rep. 38, pp. 1126, 2000.Google Scholar
5. Dolgova, T. V., Maidykovski, A.I., Martemyanov, M. G., Fedyanin, A. A., Aktsipetrov, O.A., Marowsky, G., Yakovlev, V.A., and Mattei, G., Appl. Phys. Lett. 81, pp. 27252727, 2002.Google Scholar
6. Kuzik, L. A., Yakovlev, V., and Mattei, G., Appl. Phys. Lett. 75, pp. 18301832, 1999.Google Scholar
7. Dolgova, T. V., Maidikovsky, A. I., Martemyanov, M. G., Marowsky, G., Mattei, G., Schuhmacher, D., Yakovlev, V. A., edyanin, A. A. F, and tsipetrov, O. A. A k, JETP Lett. 73, pp. 69, 2001.Google Scholar
8. Dolgova, T. V., Maidikovsky, A. I., Martemyanov, M. G., Fedyanin, A. A., and Aktsipetrov, O. A., JETP Lett. 75, pp. 1519, 2002.Google Scholar
9. Ghulinyan, M., Oton, C. J., Gaburro, Z., Bettotti, P., and Pavesi, L., Appl. Phys. Lett. 82, pp. 15501552, 2003.Google Scholar
10. Ghulinyan, M., Oton, C. J., Bonetti, G., Gaburro, Z., and Pavesi, L., J. Appl. Phys. 93, pp. 97249729, 2003.Google Scholar
11. Bethune, D. S., J. Opt. Soc. Am. B 6, pp. 910916, 1989.Google Scholar
12. Dolgova, T.V., Maidykovski, A. I., Martemyanov, M. G., Fedyanin, A. A., ktsipetrov, O. A. A., Schuhmacher, D., Marowsky, G., Yakovlev, V.A., Mattei, G., Ohta, N., and Nakabayashi, S., J. Opt. Soc. Am. B 19, pp. 21292140, 2002.Google Scholar