Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T09:35:21.823Z Has data issue: false hasContentIssue false

Room Temperature Process for Chemical Vapor Deposition of Amorphous Silicon Carbide Thin Film Using Monomethylsilane Gas

Published online by Cambridge University Press:  13 June 2012

Hitoshi Habuka
Affiliation:
Department of Chemical and Energy Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama 240-8501, Japan.
Yusuke Ando
Affiliation:
Department of Chemical and Energy Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama 240-8501, Japan.
Masaki Tsuji
Affiliation:
Department of Chemical and Energy Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama 240-8501, Japan.
Get access

Abstract

The silicon carbide thin film formation process, completely performed at room temperature, was developed by argon plasma and a chemical vapor deposition using monomethylsilane gas. Time-of-flight secondary ion mass spectrometry showed that siliconcarbon bonds existed in the obtained film, the surface of which could remain specular after the exposure to hydrogen chloride gas at 800 °C. The silicon dangling bonds formed at the silicon surface by the argon plasma are considered to easily accept the monomethylsilane molecules at room temperature to produce the amorphous silicon carbide film.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rinaldi, A. M. and Crippa, D., Silicon Epitaxy (Editor: Crippa, D., Rode, D. L. and Masi, M.), Chapter 1, P. 1 (2001) Academic Press (San Diego, USA).Google Scholar
2. Fu, X., Dunning, J. L., Mehregany, M., and Zorman, C. A., J. Electrochem. Soc., 158, H675 (2011) .Google Scholar
3. Kimoto, T. and Matsunami, H., J. Appl. Phys., 75, 850 (1994).Google Scholar
4. Myers, R. L., Shishkin, Y., Kordina, O. and Saddow, S. E., J. Cryst. Growth, 285, 486 (2005).Google Scholar
5. Habuka, H. Ohmori, H. and Anndo, Y., Surf. Coat. Tech., 204, 1432 (2010).Google Scholar
6. Habuka, H., and Ando, Y., J. Electrochem. Soc., 158, H352 (2011).Google Scholar
7. Habuka, H. and Ando, Y., J. Nanosci. Nanotech., 11, 8374 (2011).Google Scholar
8. Habuka, H., Ando, Y. and Tsuji, M., Surf. Coat. Technol., 206 (2011) 1503.Google Scholar
9. Habuka, H., Suzuki, T., Yamamoto, S., Nakamura, A., Takeuchi, T. and Aihara, M., Thin Solid Films, 489, 104 (2005).Google Scholar
10. Walsh, R., Acc. Chem. Res., 14, 246 (1981).Google Scholar
11. Zhou, Z., Aydil, E. S., Gottscho, R. A., Chabal, Y. J., and Reif, R., J. Electrochem. Soc., 140, 3316 (1993).Google Scholar