Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T10:48:24.107Z Has data issue: false hasContentIssue false

Reliability of nc-ZnO Embedded ZrHfO High-k Nonvolatile Memory Devices Stressed at High Temperatures

Published online by Cambridge University Press:  31 January 2011

Chia-Han Yang
Affiliation:
[email protected], Texas A&M University, Thin Film Nano & Microeletronics Research Laboratory, College Station, Texas, United States
Yue Kuo
Affiliation:
[email protected], Texas A&M University, Thin Film Nano & Microeletronics Research Laboratory, College Station, Texas, United States
Chen-Han Lin
Affiliation:
[email protected], Texas A&M University, Thin Film Nano & Microeletronics Research Laboratory, College Station, Texas, United States
Way Kuo
Affiliation:
[email protected], City University of Hong Kong, Hong Kong, China
Get access

Abstract

The nanocrystalline ZnO embedded Zr-doped HfO2 high-k dielectric has been made into MOS capacitors for nonvolatile memory studies. The device shows a large charge storage density, a large memory window, and a long charge retention time. In this paper, authors investigated the temperature effect on the reliability of this kind of device in the range of 25°C to 175°C. In addition to the trap-assisted conduction, the memory window and the breakdown strength decreased with the increase of the temperature. The high-k film's conductivity increased and the nc-ZnO's charge retention capability decreased with the increase of temperature. The nc-ZnO retained the trapped charges even after the high-k film broke down and eventually lost the charges at a higher voltage. The difference between these two voltages decreased with the increase of the temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1The International Technology Roadmap for Semiconductors. Semiconductor Industry Association, December 2003.Google Scholar
2 Chatterjee, S., Samanta, S. K., Banerjee, H. D. and Maiti, C. K., in Semicond. Sci. Technol., vol. 17, p. 993, 2003.Google Scholar
3 Tiwari, S., Rana, F., Hanafi, H., Hartstein, A., Crabbé, E.F., and Chan, K., in Appl. Phys. Lett., vol. 68, no. 10, p. 1377, 1996.Google Scholar
4 Salvo, B. De, Ghibaudo, G., Pananakakis, G., Masson, P., Baron, T., Buffet, N., Fernandes, A. and Guillaumot, B., in IEEE Trans. on Electron Devices, vol. 48, p. 1789, 2001.Google Scholar
5 Blauwe, J. De, in IEEE Trans. Nanotechnol., vol. 1, p. 72. 2002.Google Scholar
6 Yan, J., Kuo, Y., and Lu, J., in Electrochem. Solid-State Lett., vol. 10, H199, 2007.Google Scholar
7 Kuo, Y., Lu, J., Chatterjee, S., Yan, J. , Yuan, T. , Kim, H.-C., Luo, W., Peterson, J. and Gardner, M., in ECS Trans, vol. 1 (5), p. 447, 2006.Google Scholar
8 Triyoso, D. H., in ECS Trans., vol. 3 (3), p. 463, 2006.Google Scholar
9 Kuo, Y., in ECS Trans., vol. 3 (3), p. 253, 2006.Google Scholar
10 Kuo, Y., in ECS Trans., vol. 2 (1), p. 13, 2006.Google Scholar
11 Lu, J., Lin, C.-H. and Kuo, Y., in JES, vol. 115(6), H386, 2008.Google Scholar
12 Birge, A. and Kuo, Y., in JES, vol. 154 (10), H887, 2007.Google Scholar
13 Farmer, D. B. and Gordon, R. G., in J. Appl. Phys., vol. 101, 124503, 2006.Google Scholar
14 Lee, J. J., Harada, Y., Pyun, J. W. and Kwong, D. L., in Appl. Phys. Lett., vol. 86, 103505, 2005.Google Scholar
15 Baik, D. G. and Cho, S. M., in Thin Solid Film, vol. 354, p. 227, 1999.Google Scholar
16 Yang, C. H., Kuo, Y., Lin, C. H., Wan, R. and Kuo, W., in Mat. Res. Soc. Symp. Proc., 1071, F02-09, 2008.Google Scholar
17 Yang, C. H., Kuo, Y., Lin, C. H., Wan, R. and Kuo, W., in Intl. Rel. Phys. Symp., p. 46, 2008.Google Scholar
18 Chen, J. H., Lei, T. F., Landheer, D., Wu, X., Ma, M. W., Wu, W. C., Yang, T. Y. and Chao, T. S., in Jpn. J. Appl. Phys., vol. 46, no. 10A, p. 6586, 2007.Google Scholar
19 Luo, W., Kuo, Y. and Kuo, W., in IEEE Trans. on Device and Materials Reliability, vol. 4, no. 3, p. 488, 2004.Google Scholar
20 Luo, W., Yuan, T., Kuo, Y., Lu, J., Yan, J. and Kuo, W., in Appl. Phys. Lett., vol. 88, 202904, 2006.Google Scholar
21 Luo, W., Yuan, T., Kuo, Y., Lu, J., Yan, J. and Kuo, W., in Appl. Phys. Lett., vol. 89, 072901, 2006.Google Scholar
22 Satake, H. and Toriumi, A., in IEEE Trans. on Electron Devices, vol. 47, no. 4, p. 741, 2000.Google Scholar
23 Degraeve, R., Groeseneken, G., Bellens, R., Depas, M. and Maes, H. E., in IEDM Tech. Dig., p. 863, 1995.Google Scholar
24 Zhu, W. J., Ma, T. P., Tamagawa, T., Kim, J., and Di, Y., in IEEE Electron Device Letters, vol. 23 no. 2, p. 97, 2002.Google Scholar
25 Xu, Z., Houssa, M., Gendt, S. De and Heyns, M., in Appl. Phys. Lett., vol. 80. no. 11, p. 1975, 2002.Google Scholar
26 Hori, T., Gate dielectrics and MOS ULSIs–Principles, technologies and applications, Berlin: Springer-Verlag, vol. 34, p. 4445, 1997.Google Scholar
27 Lee, J. J., Wang, X., Bai, W., Lu, N. and Kwong, D. L., in IEEE Trans. on Electron Devices, vol., no. 10, p. 2067, 2003.Google Scholar
28 Kuo, Y., Lu, J., Chatterjee, S., Yan, J., Kim, H. C., Yuan, T., Luo, W., Peterson, J., and Gardner, M., in ECS Trans., vol. 1, no. 5, p. 447, 2006.Google Scholar
29 Sze, S. M., Physics of Semiconductor Devices, New York, John-Wiley & Sons, p. 403, 1981.Google Scholar
30 Cavendish, H. and Maxwell, J. C., Electrical Researches of the Hourable Henry Cavendish, F.R.S., University Press, p. 432, 1879.Google Scholar
31 Wan, R., Yan, J., Kuo, Y., and Lu, J., in Jpn. J. Appl. Phys., vol. 47, no. 3, p. 1639, 2008.Google Scholar