Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T08:07:55.220Z Has data issue: false hasContentIssue false

Reduction of p+-n+ Junction Tunneling Current for Base Current Improvement in Si/SiGe/Si Heterojunction Bipolar Transistors

Published online by Cambridge University Press:  22 February 2011

Ž Matutinović-Krstelj
Affiliation:
Princeton University, Department of Electrical Engineering, Princeton, NJ 08544
E. J. Prinz
Affiliation:
Princeton University, Department of Electrical Engineering, Princeton, NJ 08544
P. V. Schwartz
Affiliation:
Princeton University, Department of Electrical Engineering, Princeton, NJ 08544
J. C. Sturm
Affiliation:
Princeton University, Department of Electrical Engineering, Princeton, NJ 08544
Get access

Abstract

A reduction of parasitic tunneling current by three orders of magnitude in epitaxial p+-n+ junctions grown by Rapid Thermal Chemical Vapor Deposition (RTCVD) compared to previously published ion implantation results is reported. These results are very important for the reduction of base current in scaled homojunction and Si/SiGe/Si heterojunction bipolar transistors. High reduction in tunneling currents allows higher limits to transistor base and emitter dopings. Significant tunneling was observed when the doping levels at the lighter doped side of the junction were of the order of 1×1019cm−3 for both Si/Si and SiGe/Si devices. These results were confirmed by I-V measurements performed at different temperatures. Since the tunneling current is mediated by midgap states at the junction, these results demonstrate the high quality of the epitaxial interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Del Alamo, J. A. and Swanson, R. M., IEEE El. Dev. Lett., 7, 629, (1986).Google Scholar
2. Stork, J. M. C. and Isaak, R. D., IEEE Trans. El. Dev., 30 1527 (1983).Google Scholar
3. Hackbarth, E. and Duan-Lee Tang, D., IEEE Trans. El. Dev, 35, 2108 (1988).CrossRefGoogle Scholar
4. Li, G. P., Hackbarth, E. and Chen, T. -C., IEEE Trans. El. Dev. 35 89 (1988).Google Scholar
5. Chynoweth, A. G., Feldmann, W. L., Logan, R. A., Phys. Rev., 121, 684 (1961).Google Scholar
6. King, C. A., Hoyt, J. L., Gibbons, J. F., IEEE Trans. El. Dev. 36, 2093 (1989).CrossRefGoogle Scholar
7. Patton, G. L., Iyer, S. S., Delage, S. L., Tiwari, S. and Stork, J. M. C., IEEE El. Dev. Lett., 9, 165, (1988).CrossRefGoogle Scholar
8. Narozny, P., Dämbkes, H., Kibbel, H. and Kasper, E., IEEE Trans. El. Dev. 36, 2363, (1989).CrossRefGoogle Scholar
9. Patton, G. L., Comfort, J. H., Meyerson, B. S., Crabbé, E. F., Scilla, G. J., de Frésart, E. D., Stork, J. M. C., Sun, J. Y. -C., Harame, D. L. and Burghartz, J. N., IEEE El. Dev. Lett., 11, 171, (1990).CrossRefGoogle Scholar
10. Harame, D. L., Stork, J. M. C., Meyerson, B. S., Crabbé, E. F., Scilla, G. J., de Frésart, E, Megdanis, A. E., Stanis, C. L., Patton, G. L., Comfort, J. H., Bright, A. A., Johnson, J. B. and Furkay, S. S., IEDM Tech. Dig., 2.7.1, (1990).Google Scholar
11. Kamins, T. I., Nauka, K., Krueger, J. B., Hoyt, J. L., King, C. A., Noble, D. B., Gronet, C. M. and Gibbons, J. F., IEEE EI. Dev. Lett., 10, 503, (1989).Google Scholar
12. Warnock, J., Cressler, J. D., Jenkins, K. A., Chen, T. -C., Sun, J. Y. -C. and Tang, D. D., IEEE EI. Dev. Lett, 11, 475, (1990)Google Scholar