Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T01:54:50.903Z Has data issue: false hasContentIssue false

Recoilless Fraction in Amorphous and Nanocrystalline FeCuNbSiB System

Published online by Cambridge University Press:  28 December 2012

Monica Sorescu
Affiliation:
Duquesne University, Department of Physics, Fisher Hall, Pittsburgh, PA 15282-0321, USA
Tianhong Xu
Affiliation:
Duquesne University, Department of Physics, Fisher Hall, Pittsburgh, PA 15282-0321, USA
Steven Herchko
Affiliation:
Duquesne University, Department of Physics, Fisher Hall, Pittsburgh, PA 15282-0321, USA
Get access

Abstract

Differential scanning calorimetry, X-ray diffraction, and room temperature Mössbauer spectrum measurements of Fe73.5Cu1Nb3Si13.5B9 (Finemet) alloy have been carried out in order to study its structural and magnetic properties as a function of annealing temperature. The Mössbauer spectra of annealed Finemet alloy could be fitted with 4 or 5 sextets and one doublet at higher annealing temperatures, revealing the appearance of different crystalline phases corresponding to the different Fe sites above the crystallization temperature. The appearance of the nanocrystalline phases at different annealing temperatures was further confirmed by the recoilless fraction measurements. These made use of our recently-developed dual absorber method, which made it possible to determine precisely the recoilless fractions of the amorphous, nanocrystalline and grain boundary phases separately.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Nowik, I., Jacob, I. and Moreh, R., Phys. Rev. B 47, 723 (1993).10.1103/PhysRevB.47.723CrossRefGoogle Scholar
Rancourt, D.G., Nucl. Instrum. Meth. Phys. Res. B 44, 199 (1989).10.1016/0168-583X(89)90428-XCrossRefGoogle Scholar
Ruebenbauer, K. and Wdowik, U.D., J. Phys. Chem. Solids 66, 716 (2005).10.1016/j.jpcs.2004.09.006CrossRefGoogle Scholar
Tewari, S.P., Silotia, P., Bera, K., Phys. Lett. A 249, 537 (1998).10.1016/S0375-9601(98)00742-7CrossRefGoogle Scholar
Ruebenbauer, K., Wdowik, U.D. and Kwater, M., Physica B 229, 49 (1996).10.1016/S0921-4526(96)00505-4CrossRefGoogle Scholar
Mostafa, M.F. and Emrick, R.M., Physica B 210, 67 (1995).10.1016/0921-4526(94)00923-JCrossRefGoogle Scholar
Kobayashi, T. and Fukumura, K., Nucl. Instrum. Meth. 180, 549 (1981).10.1016/0029-554X(81)90098-7CrossRefGoogle Scholar
Sorescu, M., Mater. Lett. 54, 256 (2002).10.1016/S0167-577X(01)00572-9CrossRefGoogle Scholar
Blomquist, J., Nucl. Instrum. Meth. Phys. Res. B 268, 209 (2010).10.1016/j.nimb.2009.10.182CrossRefGoogle Scholar
Sorescu, M., J. Nanopart. Res. 4, 221 (2002).10.1023/A:1019960113846CrossRefGoogle Scholar
Sorescu, M., Diamandescu, L. and Tarabasanu-Mihaila, D., Mater. Lett. 59, 22 (2005).10.1016/j.matlet.2004.09.009CrossRefGoogle Scholar
Sorescu, M., J. Mater. Sci. Lett. 21, 283 (2002).10.1023/A:1017911501126CrossRefGoogle Scholar
Sorescu, M., J. Mater. Sci. Lett. 21, 1759 (2002).10.1023/A:1020916719859CrossRefGoogle Scholar
Sorescu, M., Diamandescu, L., Tomescu, A. and Krupa, S., Physica B 404, 2159 (2009).10.1016/j.physb.2009.04.006CrossRefGoogle Scholar
Sorescu, M., Diamandescu, L. and Teodorescu, V.S., Physica B 403, 3838 (2008).10.1016/j.physb.2008.07.027CrossRefGoogle Scholar
Sorescu, M. and Pourarian, F., Physica B 403, 2754 (2008).10.1016/j.physb.2008.02.006CrossRefGoogle Scholar
Sorescu, M. and Diamandescu, L., Hyper. Interact. 196, 349 (2010).10.1007/s10751-010-0164-9CrossRefGoogle Scholar
Sorescu, M., Nucl. Instr. Meth. Phys. Res. B 269, 590 (2011).10.1016/j.nimb.2011.01.013CrossRefGoogle Scholar
Sorescu, M., J. Non-Cryst. Sol. 356, 1425 (2010).10.1016/j.jnoncrysol.2010.05.001CrossRefGoogle Scholar