Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T07:22:35.438Z Has data issue: false hasContentIssue false

Rapid Thermal Diffusion of Zinc In GaAs

Published online by Cambridge University Press:  28 February 2011

T.S. Kalkur
Affiliation:
Microelectronics Research LaboratoriesUniversity of Colorado at Colorado SpringsColorado Springs, Co 80933–7150
Y.C. Lu
Affiliation:
Microelectronics Research LaboratoriesUniversity of Colorado at Colorado SpringsColorado Springs, Co 80933–7150
C.A. Paz de Araujo
Affiliation:
Microelectronics Research LaboratoriesUniversity of Colorado at Colorado SpringsColorado Springs, Co 80933–7150
Get access

Abstract

Rapid thermal diffusion of zinc into semi-insulating GaAs from spin-on zinc silica film is investigated. The rapid thermal diffusion is performed for various diffusion times (5 to 25 sec) and temperatures (800° to 950° C) with tungstenhalogen lamps as the heat source. The sheet resistivity, surface hole concentration and mobility of these zinc diffused layers as measured by Van der Pauw technique shows the formation of shallow p+ layer. The surface morphology of these diffused layers are observed in a low voltage Scanning Electron Microscope (SEM) and the depth profile of diffused impurities are determined by Secondary Ion Mass Spectroscopy (SIMS). Nonalloyed ohmic contacts are formed on these zinc diffused layers and the contact resistivity is determined by the Transmission Line Method (TLM).

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Illegens, M., Schwartz, B., Koszi, L.A. and Miller, R.C.; Appl. Phys. Lett., 33, (6) 29 (1978).Google Scholar
2. Lehovec, K., J.Solid State Circuits, Sc-16, 797 (1979).Google Scholar
3. Gandhi, S.K. and Field, R.J., Appl. Phys. Lett., 38 (9) 267 (1981).Google Scholar
4. Arnold, N., Schmitt, R. and Heime, K., J.Phys. D Appl. Phys., 17, 17, 443 (1981)Google Scholar
5. Nissim, Y.I., Gibbons, J.F., Evans, C.A., Deline, V.R. and Norberg, J.C., Appl. Phys. Lett., Vol. 37, 90 (1980).Google Scholar
6. Kalkur, T.S., Nassiblan, A.G. and Rose, A., IEEE, EDL-6, No. 10, 489 (1985).Google Scholar
7. Kalkur, T.S., Nassibian, A.G. and Rose, A., IEEE Proceedings, Solid State and Electron Devices (in press).Google Scholar
8. Kepler, N.J., Cheung, N.W. and Chu, P.K., Rapid Thermal Processing, edited by Sedgwick, T.O., Seidel, T.E. and Tsaur, B.Y., (1986).Google Scholar
9. Gandhi, S.K., Hwang, R.T. and Borrego, J.M., Appi. Phys. Lett., 48 (6), 415 (1986).Google Scholar
10. Lester, S.L., Farley, C.W., Kim, T.S., Streetman, B.G. and Antony, J.M., Appl. Phys. Lett. 48 (16), 1063 (1986).Google Scholar
11. Gandhi, S.K. and Field, R.J., Appl. Phys. Lett., 38 (9), 267 (1981).Google Scholar
12. Lemnios, Z.J., Lau, C.L., Shade, G.F., Dawson, D.E., Lee, S.H., Dickens, L.E. and Kim, H.B., GaAs and related Compounds, Inst. of Phys. Conf. Ser. 65, 363 (1982).Google Scholar
13. Weisberg, L.R. and Blank, J., Phys. Rev., 131, 1548 (1963).Google Scholar
14. Berger, H.H., J. Electrochem. Soc., Vol. 119, No. 4, 507 (1972).Google Scholar
15. Reeves, G.K. and Harrison, H.B., IEEE Electron Device Lett., Vol. EDL–3, 11 (1982).Google Scholar