Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-29T09:50:11.986Z Has data issue: false hasContentIssue false

Properties of Gate-Quality SiO2 Films Prepared by Electron Cyclotron Resonance Chemical Vapour Deposition in an Ultrahigh Vacuum Processing System

Published online by Cambridge University Press:  15 February 2011

Y. Tao
Affiliation:
Institute for Microstructural Sciences, National Research Council of Canada, Ottawa, Ontario, Canada, KIA 0R6
D. Landheer
Affiliation:
Institute for Microstructural Sciences, National Research Council of Canada, Ottawa, Ontario, Canada, KIA 0R6
J. E. Hulse
Affiliation:
Institute for Microstructural Sciences, National Research Council of Canada, Ottawa, Ontario, Canada, KIA 0R6
D.-X. Xu
Affiliation:
Institute for Microstructural Sciences, National Research Council of Canada, Ottawa, Ontario, Canada, KIA 0R6
T. Quance
Affiliation:
Institute for Microstructural Sciences, National Research Council of Canada, Ottawa, Ontario, Canada, KIA 0R6
Get access

Abstract

We have prepared thin SiO2 layers on Si(100) wafers by electron cyclotron resonance chemical vapour deposition (ECR-CVD) in a multi-chamber ultra-high vacuum (UHV) processing system. The oxides were characterized in-situ by single wavelength ellipsometry (SWE) and x-ray photoelectron spectroscopy (XPS) and ex-situ by Fourier transform infra-red spectroscopy (FTIR), spectroscopic ellipsometry (SE) and capacitance-voltage (CV) electrical measurements. Films deposited at higher pressures, low powers and low silane flow rates had excellent physical and electrical properties. Films deposited at 400 °C had better physical properties than those of thermal oxides grown in dry oxygen at 700 °C. A 1 minute anneal at 950 °C reduced the fast interface state density from 1.2×1011 to 7×1010 eV−1cm−2

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Salbert, G.T., Reinhard, D.K., and Asmussen, J., J.Vac. Sci. Technol. A, 8, 2919 (1990).Google Scholar
2. Karl, D.A., Hess, D.W., Lieberman, M.A., Nguyen, T.D.D., and Gronsky, R., J. Appl. Phys., 70, 3301 (1991).Google Scholar
3. Sung, K.T. and Pang, S.W., J. Vac Sci. Technol. B, 10, 2211 (1992).Google Scholar
4. Hu, Y.Z., Joseph, J., and Irene, E.A., Appl. Phys. Lett. 59, 1353 (1991); J. Joseph, Y.Z. Hu, and E.A. Irene, J. Vac. Sci. Technol. B, 10, 611 (1992).Google Scholar
5. Herak, T.V., Chau, T.T., Thomson, D.J., Mejia, S.R., Buchanan, D.A., and Kao, K.C., J. Appl. Phys. 65, 2457 (1989); T.T. Chau, T.V. Herak, D.J. Thomson, S.R. Mejia, D.A. Buchanan, R.D. McCleod, and K.C. Kao, IEEE Trans. Elec. Insul. 25, 593 (1990); T.T. Chau, S.R. Meija, and K.C. Kao, Mat. Res. Soc. Symp. Proc. Vol. 223, 69, (1991).Google Scholar
6. Hochella, M.F. Jr., and Carim, A. H. Surf. Sci. Lett. 197, L260 (1988); F. J. Himpsel, F. R. McFeely, A. Taleb-Ibrahimi, J. A. Yarmoff, and G. Hollinger, Phys. Rev. B, 38, 6084 (1988).Google Scholar
7. Landheer, D., Tao, Y., Hulse, J., Quance, T., and Xu, D.-X., to be publishedGoogle Scholar
8. Jellison, G.E., Jr. and Modine, F.A., Phys. Rev. B, 27, 7466 (1983).Google Scholar
9. Jellison, G. E. Jr., Optical Materials 1, 41 (1992).Google Scholar
10. Bruggeman, D. A. G., Ann. Phys. (Leipzig) 24, 636 (1935).Google Scholar
11. Malitson, I. H., J. Opt. Soc. Am. 55, 1205 (1965).Google Scholar
12. Tao, Y., Landheer, D., Baribeau, J.-M., Hulse, J. E., Xu, D.-X. and Graham, M. J., Mat. Res. Soc. Symp. Proc. Vol.338, 57 (1994).Google Scholar
13. Pliskin, W. A., J. Vac. Sci. Technol. 14, 1064(1977).Google Scholar
14. Castagne, R. and Vapaille, A., Surface Sci. 28, 557( 1971).Google Scholar
15. Feigl, F.J., Young, D.R., DiMaria, D.J., Lai, S.K., and Calise, J., J. Appl. Phys. 52, 5665 (1981).Google Scholar
16. Zhang, J.F., Taylor, S., and Ecclestone, W., J. Appl. Phys. 72, 1429 (1992).Google Scholar