Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T17:52:44.403Z Has data issue: false hasContentIssue false

Preparation and Characterization of Microporous Sol-Gel Derived Ceramic Membranes for GAS Separation Applications

Published online by Cambridge University Press:  25 February 2011

R. S. A. De Lange
Affiliation:
University of Twente, Faculty of Chemical Technology, Laboratory of Inorganic Chemistry, Materials Science and Catalysis, P.O. Box 217, 7500 AE Enschede, The Netherlands
J. H. A. Hekkink
Affiliation:
University of Twente, Faculty of Chemical Technology, Laboratory of Inorganic Chemistry, Materials Science and Catalysis, P.O. Box 217, 7500 AE Enschede, The Netherlands
K. Keizer
Affiliation:
University of Twente, Faculty of Chemical Technology, Laboratory of Inorganic Chemistry, Materials Science and Catalysis, P.O. Box 217, 7500 AE Enschede, The Netherlands
A. J. Burggraaf
Affiliation:
University of Twente, Faculty of Chemical Technology, Laboratory of Inorganic Chemistry, Materials Science and Catalysis, P.O. Box 217, 7500 AE Enschede, The Netherlands
Get access

Abstract

Mesoporous alumina membranes were modified with microporous silica. The polymeric silica sols consist of very weakly branched polymeric molecules with a fractal dimension of 1.3 and Guinier radius of ≈ 2.0 nm. The resulting top layer material is microporous with a porosity of 40% and a layer thickness of 60 nm. Gas transport is activated with an activation energy of 11 kJ/mol for hydrogen and molecular sieve like separation factors have been obtained. From the mechanism of gas transport the conclusion can be drawn that the pores are of molecular dimensions (0.7 – 1 nm diameter).

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Brinker, C. J. and Scherer, G. W., Sol-Gel Science: The Physics and Chemistry of Sol- Gel Processing, (Academic Press, San Diego, 1990).Google Scholar
[2] Bhave, R. R., Inorganic Membranes: Synthesis. Characteristics, and Applications, (Van Nostrand Reinhold, New York, 1991).Google Scholar
[3] Sing, K. S. W., Everett, D. H., Haul, R. A. W., Moscou, L., Pierotti, R. A., Rouquérol, J., Siemieniewska, T, Pure & Appl. Chem., 57 (4), 603 (1985).Google Scholar
[4] Brinker, C. J., Keefer, K. D., Schaefer, D. W., Assink, R. A., Kay, B. D. and Ashley, C. S., J. Non-Crystalline Solids, 63, 45 (1984).Google Scholar
[5] Strawbridge, I., Craievich, A. F. and James, P. F., J. Non-Crystalline Solids, 72, 139 (1985).Google Scholar
[6] Meakin, P., in On Growth and Form, edited by Stanley, H.E. and Ostrowsky, N. (Martinus Nijhof, Dordrecht, 1986), p. 111.Google Scholar
[7] Uhlhom, R. J. R., Keizer, K. and Burggraaf, A. J., J. Membr. Sci., 46, 225 (1989).; J. Membr. Sci., 66 (2&3), 259 (1992).Google Scholar
[8] de Lange, R. S. A., Hekkink, J. H. A., Keizer, K. and Burggraaf, A. J., Key Engineering Materials, 61&62, 77 (1991).Google Scholar
[9] Uhlhom, R. J. R., Keizer, K. and Burggraaf, A. J., J. Membr. Sci, 66 (2&3), 271 (1992).Google Scholar
[10] Kitao, S., Kameda, H. and Asaeda, M., Membrane, 15 (4), 222 (1990).Google Scholar
[11] Ohya, H., Hisamatsu, T., Fujimoto, H., Sato, S. and Negishi, Y., Key Engineering Materials, 61&62, 353 (1991).Google Scholar
[12] Kitao, S. and Asaeda, M., Key Engineering Materials, 61&62, 267 (1991).Google Scholar
[13] Okubo, T. and Inoue, H., AlChE Journal, 35 (5), 845 (1989).CrossRefGoogle Scholar
[14] Gavalas, G. R., Megiris, C. E. and Nam, S. W., Chem. Eng. Sci., 44 (9), 1829 (1989);Google Scholar
Tsapatsis, M., Kim, S., Nam, S. W. and Gavalas, G., Ind. Eng. Chem. Res., 30 (9), 2152 (1991).Google Scholar
[15] Geus, E. R., Mulder, A., Vischjager, D. J., Schoonman, J. and van Bekkum, H., Key Engineering Materials, 61&62, 57 (1991).Google Scholar
[16] Koresh, J. E. and Softer, A., Sep. Science Techn., 18, 723 (1983); Chem. Soc. Farad. Trans.l, 82, 2057 (1986).CrossRefGoogle Scholar
[17] Burggraaf, A. J., Bouwmeester, H. J. M., Boukamp, B. A., Uhlhorn, R. J. R. and Zaspalis, V. T., in Science of Ceramic Interfaces, edited by Nowotny, J. (Elsevier Science Publishers, Amsterdam, 1991), p. 525.Google Scholar
[18] van Vuren, R. J., Bonekamp, B. C., Keizer, K., Uhlhorn, R. J. R., Veringa, H. J. and Burggraaf, A. J., in High Tech Ceramics, edited by Vincenzini, P. (Elsevier Science Publishers, Amsterdam, 1987), p. 2235.Google Scholar
[19] Leenaars, A. F. M. and Burggraaf, A. J., J. Colloid and Interf. Sci., 105 (1), 27 (1985).Google Scholar
[20] Martin, J. E. and Hurd, A. J., J. Appl. Cryst., 20, 61 (1987).Google Scholar
[21] Mandelbrot, B. B., The Fractal Geometry of Nature, (Freeman, San Francisco, 1982).Google Scholar
[22] Way, J. D. and Roberts, D. L., Sep. Sci. Technol., 27, (1), 29 (1992).Google Scholar