Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T00:29:55.080Z Has data issue: false hasContentIssue false

Potential Bone Replacement Materials Prepared by Two Methods

Published online by Cambridge University Press:  30 March 2012

Steve Lee
Affiliation:
University of California, San Diego, Materials Science and Engineering Program, 9500 Gilman Dr., La Jolla, CA 92093 USA
Michael Porter
Affiliation:
University of California, San Diego, Materials Science and Engineering Program, 9500 Gilman Dr., La Jolla, CA 92093 USA
Scott Wasko
Affiliation:
University of California, San Diego, Skaggs School of Pharmacy, 9500 Gilman Dr., La Jolla, CA 92093 USA
Grace Lau
Affiliation:
Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720 USA
Po-Yu Chen
Affiliation:
National Tsing Hua University, Department of Materials Science and Engineering, Hsinchu 30013, Taiwan, R.O.C.
Ekaterina E. Novitskaya
Affiliation:
University of California, San Diego, Materials Science and Engineering Program, 9500 Gilman Dr., La Jolla, CA 92093 USA
Antoni P. Tomsia
Affiliation:
Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720 USA
Adah Almutairi
Affiliation:
University of California, San Diego, Skaggs School of Pharmacy, 9500 Gilman Dr., La Jolla, CA 92093 USA
Marc A. Meyers
Affiliation:
University of California, San Diego, Materials Science and Engineering Program, 9500 Gilman Dr., La Jolla, CA 92093 USA University of California, San Diego, Dept. of Mechanical and Aerospace Engineering, 9500 Gilman Dr., La Jolla, CA 92093 USA
Joanna McKittrick
Affiliation:
University of California, San Diego, Materials Science and Engineering Program, 9500 Gilman Dr., La Jolla, CA 92093 USA University of California, San Diego, Dept. of Mechanical and Aerospace Engineering, 9500 Gilman Dr., La Jolla, CA 92093 USA
Get access

Abstract

Natural and synthetic hydroxyapatite (HA) scaffolds for potential load-bearing bone implants were fabricated by two methods. The natural scaffolds were formed by heating bovine cancellous bone at 1325°C, which removed the organic and sintered the HA. The synthetic scaffolds were prepared by freeze-casting HA powders, using different solid loadings (20–35 vol.%) and cooling rates (1–10°C/min). Both types of scaffolds were infiltrated with polymethylmethacrylate (PMMA). The porosity, pore size, and compressive mechanical properties of the natural and synthetic scaffolds were investigated and compared to that of natural cortical and cancellous bone. Prior to infiltration, the sintered cancellous scaffolds exhibited pore sizes of 100 – 300 μm, a strength of 0.4 – 9.7 MPa, and a Young’s modulus of 0.1 – 1.2 GPa. The freeze-casted scaffolds had pore sizes of 10 – 50 μm, strengths of 0.7 – 95.1 MPa, and Young’s moduli of 0.1 –19.2 GPa. When infiltrated with PMMA, the cancellous bone- PMMA composite showed a strength of 55 MPa and a Young’s modulus of 4.5 GPa. Preliminary data for the synthetic HA-PMMA composite showed a strength of 42 MPa and a modulus of 0.8 GPa.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Weiner, S., Wagner, H.D., Annu Rev Mater Sci 28, 271298 (1998).10.1146/annurev.matsci.28.1.271CrossRefGoogle Scholar
2. Keaveny, T.M., Morgan, E.F., Niebur, G.L., Yeh, O.C., Annu Rev Biomed Eng 3, 307333 (2001).10.1146/annurev.bioeng.3.1.307CrossRefGoogle Scholar
3. Novitskaya, E., Chen, P.-Y., Lee, S., Castro-Ceseña, A., Hirata, G., Lubarda, V., McKittrick, J., Acta Biomater 7(8), 31703177 (2011).10.1016/j.actbio.2011.04.025CrossRefGoogle Scholar
4. Chen, P.-Y., McKittrick, J., J Mech Behav Biomed Mater 4(7), 961973 (2011).CrossRefGoogle Scholar
5. Kuboki, Y., Takita, H., Kobayashi, D., Tsuruga, E., Inoue, M., Murata, M., et al. ., J Biomed Mater Res 39(2), 190199 (1998).10.1002/(SICI)1097-4636(199802)39:2<190::AID-JBM4>3.0.CO;2-K3.0.CO;2-K>CrossRef3.0.CO;2-K>Google Scholar
6. Chang, Y.S., Gu, H.O., Kobayashi, M., Oka, M., J Arthroplasty 13(7), 816825 (1998).CrossRefGoogle Scholar
7. Lu, J.X., Anselme, F.K., Hardouin, P., Gallur, A., Descamps, M., Thierry, B., J Mater Sci 10(2), 111120 (1999).Google Scholar
8. Hulbert, S.F., Young, F.A., Mathews, R.S., Klawitter, J.J., Talbert, C.D., Stelling, F.H., J Biomed Mater Res 4(3), 433456 (1970).10.1002/jbm.820040309CrossRefGoogle Scholar
9. Chang, B.S., Lee, C.K., Hong, K.S., Youn, H.J., Ryu, H.S., Chung, S.S., Park, K.W., Biomaterials 21(12), 12911298 (2000).10.1016/S0142-9612(00)00030-2CrossRefGoogle Scholar
10. Woodard, J.R., Hilldore, A. J., Lan, S.K., Park, C.J., Morgan, A.W., Eurell, J.C., Clark, S.G., Wheeler, M.B., Jamison, R.D., Johnson, A.J.W., Biomater 28(1), 4554 (2007).10.1016/j.biomaterials.2006.08.021CrossRefGoogle Scholar
11. Liao, S.S., Cui, F.Z., Feng, Q.L., J Biomed Mater Res B 69B(2), 158165 (2004).CrossRefGoogle Scholar
12. Xiong, Z., Yan, Y., Wang, S, Zhang, R., Zhang, C., Scripta Mater 46(11), 771776 (2002).10.1016/S1359-6462(02)00071-4CrossRefGoogle Scholar
13. Lin, C.Y., Kikuchi, N., Hollister, S.J., J Biomech 37(5), 623636 (2004).CrossRefGoogle Scholar
14. Taboas, J.M., Maddox, R.D., Krebsbach, P.H., Hollister, S.J., Biomater 24(1), 181194 (2003).10.1016/S0142-9612(02)00276-4CrossRefGoogle Scholar
15. Ramay, H.R.R., Zhang, M., Biomater 25(21), 51715180 (2004).CrossRefGoogle Scholar
16. Deville, S., Adv Eng Mater 10(3), 155169 (2008).10.1002/adem.200700270CrossRefGoogle Scholar
17. Azami, M., Moztarzadeh, F., Tahriri, M., J Porous Mater 17, 313320 (2010).CrossRefGoogle Scholar
18. Blindow, S., Pulkin, M., Koch, D., Adv Eng Mater 11(11), 875884 (2009).CrossRefGoogle Scholar
19. Deville, S., Saiz, E., Tomsia, A.P., Biomaterials 27(32), 54805489 (2006).CrossRefGoogle Scholar
20. Fu, Q., Mohamed, M.N., Dogan, F., Bal, B.S., Biomed Mater 3(2), (2008).10.1088/1748-6041/3/2/025005CrossRefGoogle Scholar
21. Fu, Q., Rahaman, M.N., Bal, B.S., Brown, R.F., J Mater Sci-Mater M 32(2), 8695 (2009).Google Scholar
22. Lee, E.J., Koh, Y.H., Yoon, B.H., Kim, H.E., Kim, H.W., Mater Lett 61(11-12), 22702273 (2007).10.1016/j.matlet.2006.08.065CrossRefGoogle Scholar
23. Moritz, T., Richter, H.-J., J Am Ceram Soc, 89(8), 23942398 (2009).CrossRefGoogle Scholar
24. Suetsugu, Y., Hotta, Y., Iwasashi, M., Sakane, M., Kikuchi, M., Ikoma, T., Higaki, T., Ochiai, N., Tanaka, J., Key Eng Mater 330-332, 10031006 (2007).10.4028/www.scientific.net/KEM.330-332.1003CrossRefGoogle Scholar
25. Yang, T.Y., Lee, J.M., Yoon, S.Y., Park, H.C., J Mater Sci-Mater M 21(5), 14951502 (2010).10.1007/s10856-010-4000-1CrossRefGoogle Scholar
26. Yoon, B.H., Park, C.S., Kim, H.E., Koh, Y.H., Mater Lett 62(10-11), 17001703 (2008).CrossRefGoogle Scholar
27. Zhang, Y., Zuo, K., Zeng, Y.-P., Ceramics International 35, 21512154 (2009).CrossRefGoogle Scholar
28. Zuo, K.H., Zeng, Y.P., Jiang, D.L., Mater Sci Eng C-Mater Bio 30(2), 283287 (2010).10.1016/j.msec.2009.11.003CrossRefGoogle Scholar
29. Zuo, K.H., Zhang, Y.A., Zeng, Y.P., Jiang, D.L., Ceram Int 37(1), 407410 (2011).CrossRefGoogle Scholar
30. Wegst, U.G.K., Schecter, M., Donius, A.E., and Hunger, P.M. Philoso T R Soc A 368, 20992121 (2010).10.1098/rsta.2010.0014CrossRefGoogle Scholar
31. Flemings, M.C., Solidification Processing, 1 st ed. (McGraw-Hill, New York, 1974) p. 100.Google Scholar
32. Deville, S., Saiz, E., Tomsia, A.P., Acta Mater 55(6), 19651974 (2007).10.1016/j.actamat.2006.11.003CrossRefGoogle Scholar
33. Launey, M.E., Munch, E., Alsem, D.H., Barth, H.B., Saiz, E., Tomsia, A.P., Ritchie, R.O., Acta Mater 57(10), 29192932 (2009).CrossRefGoogle Scholar
34. Munch, E., Launey, M.E., Alsem, D.H., Saiz, E., Tomsia, A.P., Ritchie, R.O., Science 322(5907), 15161520 (2008).CrossRefGoogle Scholar
35. Martinez-Vazquez, F.J., Perera, F.H., Mirand, P., Pajares, A., Guiberteau, F., Acta Biomater 6(11), 43614368 (2010).10.1016/j.actbio.2010.05.024CrossRefGoogle Scholar
36. Miao, X., Lim, W.-K., Huang, X., Chen, Y., Materials Letters 59, 4000-4005 (2005).M. Peroglio, L. Germillard, C. Gauthier, L. Chazeau, S. Verrier, M. Alini, J. Chevalier, Acta Biomater 6(11), 4369–4379(2010).10.1016/j.matlet.2005.07.062CrossRefGoogle Scholar
37. Peroglio, M., Germillard, L., Gauthier, C., Chazeau, L., Verrier, S., Alini, M., Chevalier, J., Acta Biomater 6(11), 43694379 (2010).10.1016/j.actbio.2010.05.022CrossRefGoogle Scholar
38. Sharifi, S., Shafieyan, Y., Mirzadeh, H., Bagheri-Khoulenjani, S., Rabiee, S.M., Imani, M., Atai, M., Shokrgozar, M.A., Hatampoor, A., J Biomed Mater Res A 98A(2), 257267 (2011).10.1002/jbm.a.33108CrossRefGoogle Scholar
39. Pezzotti, G., Asmus, S.M.F., Ferroni, L.P., Miki, S., J Mater Sci-Mater M 13(8), 783787 (2002).CrossRefGoogle Scholar
40. Hench, L.L., J Am Ceram Soc 74(7), 14871510 (1991).10.1111/j.1151-2916.1991.tb07132.xCrossRefGoogle Scholar