Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-02T16:08:34.014Z Has data issue: false hasContentIssue false

Polycrystalline Silicon in ULSI Technologies: Challenges for Deep-Submicron Structures

Published online by Cambridge University Press:  21 February 2011

Catherine Y. Wong
Affiliation:
IBM Research, Thomas J. Watson Research Center, P.O. Box 218 Yorktown Heights, NY 10598
Tak H. Ning
Affiliation:
IBM Research, Thomas J. Watson Research Center, P.O. Box 218 Yorktown Heights, NY 10598
Get access

Abstract

Polysilicon is a key material widely used in MOSFET, bipolar, and BICMOS devices. As these technologies evolve into the deep submicron regime, several issues emerge in the applications of polysilicon that must be addressed. In sub-0.5µm MOSFET, fabrication and reliability of n + poly for NMOS and p + poly for PMOS should be studied. In bipolar technology, scaling limits of polysilicon emitter must be investigated. Understanding polysilicon, both in terms of its basic material and process characteristics and its characteristics in specific integrated process and/or integrated device structures, is definitely required in order to realize the full potential of ULSI technologies.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wong, C.Y., Sun, J.Y.-C., Taur, Y., Oh, C.S., Angelucci, R., and Davari, B., “Doping of N + and P + Polysilicon in a Dual-Gate CMOS Process”, IEDM Technical Digest, 1988, p.238 Google Scholar
2. Sun, J.Y.-C., Wong, C.Y., Taur, Y., and Hsu, C.C.-H., “Study of Boron Penetration Through Thin Oxide with P+-Polysilicon Gate”, Digest of Technical Papers, 1989 Symposium on VLSI Technology, p. 17 Google Scholar
3. Baker, F.K., Pfiester, J.R., Mele, T.C., Tseng, H.S., Tobin, P.J., Hayden, J.D., Gunderson, C.D., and Parrillo, L.C., “The Influence of Fluorine on Threshold Voltage Instabilities in P+ Polysilicon Gated p-Channel MOSFET'S”, IEDM Technical Digest, 1989, p. 443 Google Scholar
4. Sung, J.M., Lu, C.Y., Chen, M.L., Hillenius, S.J., Lindenberger, W.S., Manchanda, L., Smith, T.E., and Wang, S.J., “Fluorine Effect on Boron Diffusion of P + Gate Devices”, IEDM Technical Digest, 1989, p.447 Google Scholar
5. Wong, C.Y. and Lai, F.S., “Ambient and Dopant Effects on Boron Diffusion in Oxides”, Appl. Phys. Letters, 48, 1658 (1986)10.1063/1.96846Google Scholar
6. Miyaki, M., Kobayashi, T. and Okazaki, Y., “Subquarter-Micrometer Gate-Length p-Channel and n-Channel MOSFET's with Extremely Shallow Source-Drain Junctions”, IEEE Trans. Elec. Devices, V.ED–36, 392 (1989)10.1109/16.19941Google Scholar
7. Tanaka, H., Aikawa, I., and Ajioka, T., “Behavior of Na + Ions in P+ Polysilicon Gates”, Digest of Technical Papers, 1988 Symposium on VLSI Technology, p.55 Google Scholar
8. Wong, C.Y., Hsu, C.C.-H., and Taur, Y., “Mobile Ion Gettering in Passivated P + Polysilicon Gates”, Digest of Technical Papers, 1990 Symposium on VLSI Technology, to be publishedGoogle Scholar
9. Wong, C.Y., Piccirillo, J., Bhattacharyya, A., Taur, Y., and Hanafi, H.I., “Sidewall Oxidation of Polycrystalline-Silicon Gate”, IEEE Electron Device Letters, V.10, 420 (1989)Google Scholar
10. Orlowski, M., Mazure, C., and Lau, F., “Submicron Short Channel Effects Due to Gate Reoxidation Induced Lateral Interstitial Diffusion”, IEDM Technical Digest, 1987, p.632 Google Scholar
11. Pfiester, J.R., Parrillo, L.C., Hayden, J.D., See, Y.C., and Fejes, P., “Poly-Gate Sidewall Oxidation Induced Submicrometer MOSFET Degradation”, IEEE Electron Device Letters, V.10, 367 (1989)10.1109/55.31759Google Scholar
12. Stork, J.M.C., Arienzo, M., and Wong, C.Y., “Correlation Between the Diffusive and Electrical Barrier Properties of the Interface in Polysilicon Contacted n + -p Junctions”, IEEE Trans. Elec. Devices, V.ED–32, 1766 (1985)Google Scholar
13. Josquin, W.J.M.J., Boudewijn, P.R., and Tamminga, Y., “Effectiveness of Polycrystalline Silicon Diffusion Sources”, Appl. Phys. Lett., V.43 960 (1984)10.1063/1.94166Google Scholar
14. Ashburn, P. and Soerowirdjo, B., “Comparison of Experimental and Theoretical Results on Polysilicon Emitter Bipolar Transistors”, IEEE Trans. Elec. Devices, V.ED–31, 853 (1984)10.1109/T-ED.1984.21622Google Scholar
15. Chen, T.C., Toh, K.Y., Cressler, J.D., Warnock, J., Lu, P.F., Tang, D.D., Li, G.P., Chuang, C.T., Ning, T.H., “A Submicrometer High-Performance Bipolar Technology”, IEEE Electron Device Letters, V.10, 364 (1989)Google Scholar
16. Wong, C.Y., Komen, Y., and Harrison, H.B., “Electrical Activation of Arsenic Ion-Implanted Polycrystalline Silicon films by Rapid Thermal Annealing”, Appl.Phys.Lett. 50, 146(1987)10.1063/1.97643Google Scholar
17. Chen, T.C. et al. “A Submicron High Performance Bipolar Technology”, Digest of Technical Papers, 1989 Symposium on VLSI Technology, p.87 Google Scholar
18. Kamins, T.l., “Effect of Polysilicon-Emitter Shape on Dopant Diffusion in Polysilicon-Emitter Transistors”, IEEE Electron Device Letters, V.10, 401 (1989)Google Scholar
19. Burghartz, J.N., Sun, J.Y.-C., Mader, S.R., Stanis, C.L., Ginsberg, B.J., “Perimeter and Plug Effects in Deep Sub-Micron Polysilicon Emitter Bipolar Transistor”, Digest of Technical Papers, 1990 Symposium on VLSI Technology, to be published10.1109/VLSIT.1990.111005Google Scholar
20. Sugii, T., Yamazaki, T., Suzuki, K., Fukano, T., and Ito, T., “Si Hetero-Bipolar Transistor with an SiC Emitter and a Thin Epitaxial Base”, IEDM Technical Digest, 1989, p. 659 Google Scholar
21. Meyerson, B.S., “Low Temperature Silicon Epitaxy by Ultra High Vacuum/Chemical Vapor Deposition”, Appl. Phys. Lett. 48, 797 (1986)10.1063/1.96673Google Scholar
22. Meyerson, B.S., LeGoues, F.K., Nguyen, T.N., and Harame, D.L., “Nonequilibrium Boron Doping Effects in Low-Temperature Epitaxial Silicon Films”, Appl. Phys. Lett. 50, 113 (1987)10.1063/1.98255Google Scholar
23. Stork, J.M.C., Patton, G.L., Harame, D.L., Meyerson, B.S., lyer, S.S., Ganin, E., and Crabbe, E.F., “SiGe Heterojunction Bipolar Transistors” Digest of Technical Papers, 1989 Symposium on VLSI Technology, p.1 Google Scholar
24. Patton, G.L., Harame, D.L., Stork, J.M.C., Meyerson, B.S., Scilla, G.J. and Ganin, E., “SiGe-Base, Poly-Emitter Heterojunction Bipolar Transistor” Digest of Technical Papers, 1989 Symposium on VLSI Technology, p.95 10.1109/55.43131Google Scholar
25. Petti, C.J., McVittie, J.P., and Plummer, J.D., “Characterization of Surface Mobility on the Sidewalls of Dry-Etched Trenches”, IEDM Technical Digest, 1988, p.104 Google Scholar
26. Sunouchi, K., Takato, H., Okabe, N., Yamada, T., Ozaki, T., Inoue, S., Hashimoto, K., eda, Nitayama, A., Horiguchi, F. and Masuoka, F., “A Surrounding Gate Transistor (SGT) Cell for 64/256Mbit DRAMs”, IEDM Technical Digest, 1989, p. 23 Google Scholar
27. Richardson, W.F., Anderson, D.N., Shen, B.W., Solowiej, E.J., Chen, I.C., and Teng, C.W., “A Composed Trench Transistor (CTT) Cell for 16/64MB DRAMs”, Digest of Technical Papers, 1989 Symposium on VLSI Technology, p.65 Google Scholar
28. Minami, M., Wakui, Y., Matsuki, H., and Nagano, T., “A New Soft-Error-Immune Static Memory Cell Having a Vertical Driver MOSFET with a Buried Source for the Ground Potential”, IEEE Trans. Electron Devices, V.36, 1657 (1989)10.1109/16.34228Google Scholar
29. Eklund, R. et al. ., “A. 0.5μm BiCMOS Technology for Logic and 4Mbit-class SRAMs”, IEDM Technical Digest, 1989, p.425 Google Scholar
30. Lu, N.C.C., Rajeevakumar, T.V., Bronner, G.B., Ginsberg, B., Machesney, B.J., and Sprogis, E.J., “A Buried-Trench DRAM Cell Using a Self-Aligned Epitaxy Over Trench Technology”, IEDM Technical Digest, 1988, p.589 Google Scholar