Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-05T12:56:27.557Z Has data issue: false hasContentIssue false

Platinum-Accelerated Phase Transition in Bismuth-Based Layer-Structured Ferroelectric Thin Films

Published online by Cambridge University Press:  11 February 2011

Kazumi Kato
Affiliation:
National Institute of Advanced Industrial Science and Technology, 2266–98 Anagahora, Shimoshidami, Moriyama-ku, Nagoya 463–8560, Japan Frontier Collaborative Research Center, Tokyo Institute of Technology, 4259 Nagatsuda-cho, Midori-ku, Yokohama 226–8503, Japan
Kazuyuki Suzuki
Affiliation:
National Institute of Advanced Industrial Science and Technology, 2266–98 Anagahora, Shimoshidami, Moriyama-ku, Nagoya 463–8560, Japan
Desheng Fu
Affiliation:
National Institute of Advanced Industrial Science and Technology, 2266–98 Anagahora, Shimoshidami, Moriyama-ku, Nagoya 463–8560, Japan
Kaori Nishizawa
Affiliation:
National Institute of Advanced Industrial Science and Technology, 2266–98 Anagahora, Shimoshidami, Moriyama-ku, Nagoya 463–8560, Japan
Takeshi Miki
Affiliation:
National Institute of Advanced Industrial Science and Technology, 2266–98 Anagahora, Shimoshidami, Moriyama-ku, Nagoya 463–8560, Japan
Get access

Abstract

The phase transition of non ferroelectric pyrochlore to ferroelectric perovskite in CaBi4Ti4O15 thin films depended on matching of the atomic arrangements in platinum bottom electrodes to the Ca-Bi-Ti-O thin films. CaBi4Ti4O15 thin films crystallized on (200)-oriented platinum at 650°C showed c-axis orientation. In contrast, thin films randomly crystallized on highly crystalline (111)-oriented platinum at the same temperature contained pyrochlore phase and showed P-V hysteresis loops. The ferroelectric properties improved with the degrees of (h00) orientation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Paz de Araujo, C. A., Cuchiaro, J. D., McMillan, L. D., Scott, M. C. and Scott, J. F., Nature (London) 374, 627 (1995).Google Scholar
2. Park, B. H., Kang, B. S., Bu, S. D., Noh, T. W., Lee, J. and Jo, W., Nature (London) 401, 682 (1999).Google Scholar
3. Takeuchi, T., Tani, T. and Saito, Y., Jpn. J. Appl. Phys. 38, 5553 (1999).Google Scholar
4. Yan, H., Li, C., Zhou, J., Zhu, W., He, L. and Song, Y., Jpn. J. Appl. Phys. 39, 6339 (2000).Google Scholar
5. Kim, S. H., Kim, D. J., Maria, J. -P., Kingon, A. I., Streiffer, S. K., Im, J., Auciello, O., Krauss, A. R., Appl. Phys. Lett. 76, 496 (2000).Google Scholar
6. Leu, C. C., Yang, M. C., Hu, C. T., Chien, C. H., Yang, M. J., Huang, T. Y., Appl. Phys. Lett. 79, 3833 (2001).Google Scholar
7. Schindler, G, Hartner, W., Joshi, V., Solayappan, N., Derbenwick, G. and Mazure, C., Integr. Ferroelectr. 17, 421 (1997).Google Scholar
8. Boyle, T. J., Buchheit, C. D., Rodriguez, M. A., Al-Shareef, H. N., Hernadez, B. A., Scott, B., Ziller, J. W., J. Mater. Res. 11, 2274 (1996).Google Scholar
9. Kato, K., Suzuki, K., Nishizawa, K. and Miki, T., Appl. Phys. Lett. 78, 1119 (2001).Google Scholar
10. Kato, K., Suzuki, K., Nishizawa, K. and Miki, T., Jpn. J. Appl. Phys. 40, 5580 (2001).Google Scholar
11. Kato, K., Suzuki, K., Fu, D., Nishizawa, K. and Miki, T., Appl. Phys. Lett. 81, 3227 (2002).Google Scholar