Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-20T13:16:25.587Z Has data issue: false hasContentIssue false

A Percolative Approach to Electromigration Modelling

Published online by Cambridge University Press:  17 March 2011

C. Pennetta
Affiliation:
Lecce University, Dept. of Innovation Engineering, Lecce, Italy
L. Reggiani
Affiliation:
Lecce University, Dept. of Innovation Engineering, Lecce, Italy National Institute for Material Science, INFM, Italy
Gy. Trefán
Affiliation:
National Institute for Material Science, INFM, Italy
F. Fantini
Affiliation:
Modena University, Dept. of Engineering Sciences, Modena, Italy
A. Scorzoni
Affiliation:
Perugia University, Dept. of Electronic and Information Engineering, Perugia, Italy
I. DeMunari
Affiliation:
Parma University, Centro MTI, Parma, Italy
Get access

Abstract

We present a stochastic model which simulates electromigration damage in metallic interconnects by biased percolation of a random resistor network. The main features of experiments including Black's law and the log-normal distribution of the times to failure are well reproduced together with compositional effects showing up in early stage measurements made on Al-0.5%Cu and Al-1%Si lines.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Stauffer, D. and Aharony, A., Introduction to Percolation Theory, (Taylor and Francis, 1992).Google Scholar
2 Li, Z., Bauer, C. L., Mahajan, S., Milnes, A. G., J. Appl. Phys., 72, 1821 (1992).10.1063/1.351653Google Scholar
3 Gingl, Z., Pennetta, C., Kiss, L. B., and Reggiani, L., Semic. Sci. Technol., 11, 1770 (1998).10.1088/0268-1242/11/12/002Google Scholar
4 Fantini, F., Lloyd, J. R., Munari, I. De, and Scorzoni, A., Microelectronic Engineering, 40, 207 (1998).10.1016/S0167-9317(98)00272-XGoogle Scholar
5 Scorzoni, A., Munari, I. De, Stulens, H., D'Haeger, V., Mat. Res. Soc. Symp. Proc., 391, (1995) pp.513519.10.1557/PROC-391-513Google Scholar
6 Scorzoni, A., Franceschini, S., Balboni, R., Impronta, M., Munari, I. De, and Fantini, F. Microelectron. Reliab., 37, 1479 (1997).10.1016/S0026-2714(97)00090-5Google Scholar
7 Pennetta, C., Reggiani, L., Kiss, L. B., Physica A, 266, 214 (1999).10.1016/S0378-4371(98)00594-9Google Scholar
8 Pennetta, C., Reggiani, L., Treán, G., Proc. of MAM2000, in press.Google Scholar
9 Pennetta, C., Reggiani, L., Treán, G., Fantini, F., Munari, I. De, Scorzoni, A., Microelectron. Reliab., 39, 857 (1999).10.1016/S0026-2714(99)00113-4Google Scholar
10 Pennetta, C., Reggiani, L., Treán, G., IEEE Trans. on Electron. Devices, in press.Google Scholar
11 Black, J. R., in IEEE International Reliability Physics Symposium (1967).Google Scholar
12 Scorzoni, A., Munari, I. De, Balboni, R., Tamarri, F., Garulli, A. and Fantini, F., Microelectronics Reliab., 36, 1691 (1996).10.1016/0026-2714(96)00175-8Google Scholar
13 Scorzoni, A., Neri, B., Caprile, C., and Fantini, F., Mat. Science Rep., 7, 143 (1991).10.1016/0920-2307(91)90005-8Google Scholar
14 Tammaro, M and Setlik, B., J. Appl. Phys., 85, 7127 (1999).10.1063/1.370522Google Scholar
15 Foley, S., Scorzoni, A., Balboni, R., Impronta, M., Munari, I. De, Mathewson, A, and Fantini, F., Microelectron. Reliab., 38, 1021 (1998).10.1016/S0026-2714(98)00121-8Google Scholar