Published online by Cambridge University Press: 20 January 2011
Integration of nanomaterials (in the form of quantum dots, nanotubes, nanowires, nanocrystalline thin films, and nanocomposite films) with micromachined structures and devices has the potential to enable the development of microelectromechanical systems (MEMS) with enhanced functionality and improved performance. Here, we present a fabrication approach that combines spray-coating of electron beam resist with direct-write electron beam lithography to pattern nanomaterials on fragile micromachined components. Polymers and metallic structures in the form of arrays of holes, concentric circles, and arrays of lines, with critical dimensions ranging from 135 nm to 500 nm, were patterned directly on various micromachined structures including commercial metal-coated silicon microcantilevers used for atomic force microscopy, and commercial plate-mode SiC/AlN microresonators used for sensing.