Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-17T21:25:21.820Z Has data issue: false hasContentIssue false

Passivation, Separation and Characterization of Plasma Synthesized Silicon Nanoparticles

Published online by Cambridge University Press:  20 March 2013

Jifang Cheng
Affiliation:
Chemistry and Geochemistry Department, Colorado School of Mines, 1500 Illinois St, Golden, CO 80401, U.S.A.
Catherine Jimenez
Affiliation:
Chemistry and Geochemistry Department, Colorado School of Mines, 1500 Illinois St, Golden, CO 80401, U.S.A.
Jacob P. Bell
Affiliation:
Chemistry and Geochemistry Department, Colorado School of Mines, 1500 Illinois St, Golden, CO 80401, U.S.A.
Ingrid E. Anderson
Affiliation:
Physics Department, Colorado School of Mines, 1500 Illinois St, Golden, CO 80401, U.S.A.
Chito Kendrick
Affiliation:
Physics Department, Colorado School of Mines, 1500 Illinois St, Golden, CO 80401, U.S.A.
Yongan Yang
Affiliation:
Chemistry and Geochemistry Department, Colorado School of Mines, 1500 Illinois St, Golden, CO 80401, U.S.A.
Reuben T. Collins
Affiliation:
Physics Department, Colorado School of Mines, 1500 Illinois St, Golden, CO 80401, U.S.A.
S. Kim R. Williams
Affiliation:
Chemistry and Geochemistry Department, Colorado School of Mines, 1500 Illinois St, Golden, CO 80401, U.S.A.
Get access

Abstract

Silicon nanoparticles (Si NPs) were synthesized by plasma enhanced chemical vapor deposition (PECVD) using silane as a silicon source. Allylamine was used as passivation ligands to form water-soluble Si NPs. Finally, aqueous asymmetric flow field-flow fractionation was used to successfully separate the polydisperse Si NPs into monodisperse Si NP fractions.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hughes, B. K., Ruddy, D. A., Blackburn, J. L., Smith, D. K., Bergen, M. R., Nozik, A. J., Johnson, J. C., Beard, M. C., ACS Nano, 2012, 6(6), 5498 CrossRefGoogle Scholar
Bruche, M. Jr, Moronne, M., Gin, P., Weiss, S., Alivisatos, A. P., Science, 1998, 281, 2013 CrossRefGoogle Scholar
Kim, T. K., Kim, S. H., Yang, S. S., Son, J. K., Lee, K. H., Hong, Y. G., Shim, K. H., Yang, J. W., Lim, K. Y., Bae, S. J., Yang, G. M., Appl. Phys. Lett., 2009, 94(16), 161107 CrossRefGoogle Scholar
Shirahata, N., Hasegawa, T., Sakka, Y., Tsuruoka, T., Small, 2010, 6(8), 915 CrossRefGoogle Scholar
Peng, X. H., Ganti, S., Alizadeh, A., Sharma, P., Kumar, S. K., Nayak, S. K., Phys. Rev., 2006, 74, 035339 CrossRefGoogle Scholar
Shiohara, A., Hanada, S., Prabakar, S., Fujioka, K., Lim, T. H., Yamamoto, K., Northcote, P. T., Tilley, R. D., J. Am. Chem. Soc., 2010, 132, 248 CrossRefGoogle Scholar
Shiohara, A., Prabakar, S., Faramus, A., Hsu, C. Y., Lai, P. S., Northcote, P. T., Tilley, R. D., Nanoscale. 2011, 3, 3364 CrossRefGoogle Scholar
Tu, C., Ma, X., House, A., Kauzlarich, S. M., Louie, A. Y., ACS Medicinal Chem. Lett., 2011, 2(4), 285 CrossRefGoogle Scholar
Mastronardi, M. L., Maier-Flaig, F., Faukner, D., Henderson, E. J., Kubel, C., Lemmer, U., Ozin, G. A., Nano Lett., 2012, 12, 337 CrossRefGoogle Scholar
Mastronardi, M. L., Hennrich, F., Henderson, E. J., Maier-Flaig, F., Blum, C., Reichenbach, J., Lemmer, U., Kubel, C., Wang, D., Kappes, M. M., Ozin, G. A., J. Am. Chem. Soc., 2011, 133(31), 11928 CrossRefGoogle Scholar