Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T02:27:10.621Z Has data issue: false hasContentIssue false

Oxidation of Si nanocrystals fabricated by ultra-low energy ion implantation in thin SiO2 layers

Published online by Cambridge University Press:  01 February 2011

H. Coffin
Affiliation:
CEMES-CNRS, 29 rue J. Marvig, 31055, Toulouse, France
C. Bonafos
Affiliation:
CEMES-CNRS, 29 rue J. Marvig, 31055, Toulouse, France
S. Schamm
Affiliation:
CEMES-CNRS, 29 rue J. Marvig, 31055, Toulouse, France
N. Cherkashin
Affiliation:
CEMES-CNRS, 29 rue J. Marvig, 31055, Toulouse, France Ioffe Physico-Technical Institute, Polytekhnicheskaya 26, St Petersburg, 194021, Russia
M. Respaud
Affiliation:
LNMO, INSA, Département de Physique, 135 avenue de Rangueil, 31077 Toulouse, France
G. Ben Assayag
Affiliation:
CEMES-CNRS, 29 rue J. Marvig, 31055, Toulouse, France
P. Dimitrakis
Affiliation:
Institute of Microelectronics, NCSR ‘Demokritos', 15310 Aghia Praskevi, Greece
P. Normand
Affiliation:
Institute of Microelectronics, NCSR ‘Demokritos', 15310 Aghia Praskevi, Greece
M. Tencé
Affiliation:
Laboratoire de Physique des Solides, Université Paris-Sud-UMR 8502, 91405 Orsay, France
C. Colliex
Affiliation:
Laboratoire de Physique des Solides, Université Paris-Sud-UMR 8502, 91405 Orsay, France
A. Claverie
Affiliation:
CEMES-CNRS, 29 rue J. Marvig, 31055, Toulouse, France
Get access

Abstract

The effect of annealing in diluted oxygen on the structural characteristics of thin silicon dioxide layers with embedded Si nanocrystals fabricated by ultra-low energy ion implantation (1 keV) is reported. The nanocrystal characteristics (size, density, coverage) have been measured by spatially resolved Electron Energy Loss Spectroscopy using the spectrum-imaging mode of a Scanning Transmission Electron Microscope. Their evolution has been studied as a function of the annealing duration under N2+O2 at 900°C. An extended spherical Deal-Grove model for the self-limiting oxidation of embedded silicon nanocrystals has been carried out. It shows that stress effects, due to the deformation of the oxide, slows down the chemical oxidation rate and leads to a self-limiting oxide growth. The model predictions show a good agreement with the experimental results.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tiwari, S., Rana, F., Hanafi, H. I., Hartstein, A., Crabbé, E. F. and Chan, K., Appl. Phys. Lett. 68, 1377 (1996).Google Scholar
2. Tiwari, S., Rana, F., Chan, K., Shi, L. and Hanafi, H., Appl. Phys. Lett. 69, 1232 (1996).Google Scholar
3. Ammendola, G., Vulpio, M., Bileci, M., Nastasi, N., Gerardi, C., Renna, G., Crupi, I., Nicotra, G., and Lombardo, S. J. Vac. Sci. Technol. B 20, 2075 (2002).Google Scholar
4. King, Y. C., King, T. J. and Hu, C., IEEE Trans. Electron Devices Meet. ED–48, 696 (2001).Google Scholar
5. Normand, P., Tsoukalas, D., Kapetanakis, E., van den Berg, J., Armour, D. G., Stoemenos, J. and Vieu, C., Electrochem. and Solid State Lett. 88, 1 (1998).Google Scholar
6. Normand, P., Beltsios, K., Kapetanakis, E., Tsoukalas, D., Travlos, T., Stoemenos, J., Van Den Berg, J., Zhang, S., Vieu, C., Launois, H., Gautier, J., Jourdan, F. and Palun, L., Nucl. Inst. and Meth. in Phys. Res. B, 178, 74 (2001).Google Scholar
7. Bonafos, C., Carrada, M., Cherkashin, N., Coffin, H., Chassaing, D., Ben Assayag, G. and Claverie, A., J. Appl. Phys. 95, 5696 (2004).Google Scholar
8. Normand, P., Tsoukalas, D., and Beltsios, K., Appl. Phys. Lett. 83, 168 (2003).Google Scholar
9. Kao, D. B., McVittie, J. P., Nix, W. D., and Saraswat, K. C., IEEE Trans. Electron Devices, ED–35, 25 (1988).Google Scholar
10. Omachi, J., Nakamura, R., Nishiguchi, K. and Oda., S, MRS Symp. Proc. 638 (2001).Google Scholar
11. Chen, Y., Chen, Y., Microelectron. Engeneer., 57–58, 897 (2001).Google Scholar
12. Deal, B. E. and Grove, A. S., J. Appl. Phys. 36, 3770 (1965).Google Scholar
13. Reimer, L. in “Energy-Filtering Transmission Electron Microscopy”, Ed. Reimer, L. (Springer, New-York) (1995), p.347.Google Scholar
14. Jeanguillaume, C., Colliex, C., Ultramicroscopy 28, 252 (1989).Google Scholar
15. Ben Assayag, G., Bonafos, C., Carrada, M., Claverie, A., Normand, P., and Tsoukalas, D., Appl. Phys. Lett. 82, 200 (2003).Google Scholar
16. Müller, T., Bonafos, C., Heinig, K.-H., Tencé, M., Coffin, H., Cherkashin, N., Ben Assayag, G., Schamm, S., Zanchi, G., Colliex, C., Möller, W., Claverie, A., Appl. Phys. Lett. 85, 2373 (2004).Google Scholar
17. Bonafos, C., Cherkashin, N., Carrada, M., Coffin, H., Ben Assayag, G., Schamm, S., Dimi-trakis, P., Normand, P., Argawal, A. and Claverie, A., MRS 2004, Fall meeting, this proceeding.Google Scholar
18. Wellner, A., Paillard, V., Coffin, H., Cherkashin, N., Bonafos, C., Appl. Phys. Lett. 96, 2403 (2004).Google Scholar
19. Paul, W. and Warschauer, D. M., Eds. Solids under Pressure, New-York, Mc Graw-Hill (1963).Google Scholar
20. Dane, E. B. and Birch, F., J. Appl. Phys. 9, 669 (1938).Google Scholar
21. Fargeix, A. and Ghibaudo, G.. Appl. Phys. 54, 7153 (1983).Google Scholar
22. Wellner, A., Paillard, V., Cherkashin, N., Bonafos, C., Coffin, H., Schmidt, B. and Heinig, K. H. and Claverie, A., J. Appl. Phys. 94, 5639 (2003).Google Scholar
23. Grisolia, J., Ben Assayag, G., de Mauduit, B., Claverie, A., Kroon, R.E., Neethling, J.H., MRS Symp. Proc. 681E (2001).Google Scholar