Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T17:50:18.779Z Has data issue: false hasContentIssue false

Ordering effects in Disordered Metallic Alloys

Published online by Cambridge University Press:  10 February 2011

A. Pasturel*
Affiliation:
Laboratoire de Physique et Modélisation des Milieux Condensés. Maison des Magistères, BP 166 CNRS, 38042 Grenoble-Cedex, FRANCE.
Get access

Abstract

This paper reviews recent progress in the theory of the atomic and electronic structure of disordered metallic alloys containing transition metals (TM). Realistic structural models are obtained using molecular dynamics simulations based on pair interatomic forces derived from a tight-binding-bond method. This approach describes quantitatively compositional trends in chemical and topological short-range order in agreement with diffraction experiments.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ducastelle, F., in Order and Phase Stability in Alloys (Cohesion and Structures Series, Vol.3) eds de Boer, F.R. and Pettifor, D.G., North-Holland, Amsterdam, 1991.Google Scholar
2. Turchi, P.E.A., in Electronic Theories of Alloy Phase Stability. Intermetallic Compounds Vol.1, Principles, eds. Westbrook, J.H. and Fleischer, P.L., John Wiley and Sons Ltd, 1994.Google Scholar
3. Zunger, A., in Statics and Dynamics of Alloy Phase transformations, eds. Turchi, P.E.A., Gonis, A., NATO-ASI Series B, 319, Plenum press New York 1994, p. 361.Google Scholar
4. Gonis, A., Zhang, X.G., Freeman, A.J., Turchi, P.E.A., Stocks, G.P., and Nicholson, D.M., Phys. Rev. B 36, 4630 (1987).Google Scholar
5. Ducastelle, F. and Gautier, F., J. Phys. F 6, 2039 (1976).Google Scholar
6. Hafner, J., Kahl, G. and Pasturel, A., in Amorphous and Liquid Materials, eds. Lüscher, E. and Jacucci, J., NATO-ASI Series E, 118, Plenum Press New York 1987, p. 164.Google Scholar
7. Do Phuong, L., Nguyen Manh, D. and Pasturel, A., Phys. Rev. Lett. 71, 372 (1993).Google Scholar
8. Sutton, A.P., Finnis, M.W., Pettifor, D.G. and Ohta, Y., J. Phys. C 21, 35 (1988).Google Scholar
9. Pettifor, D.G., Phys. Rev. Lett. 63, 2480 (1989).Google Scholar
10. Pettifor, D.G. and Aoki, M., Philos. Trans. R. Soc. London, Ser. A 334, 439 (1991).Google Scholar
11. Mayou, D., Nguyen manh, D., Pasturel, A., and Cyrot-Lackmann, F., Phys. Rev. B 33, 3384 (1986).Google Scholar
12. Harrison, W.A., in Electronic Structure and the Properties of Solids, (Freeman, San Francisco, 1980).Google Scholar
13. Herman, F. and Skillman, S., in Atomic Structure Calculations (Prentice-Hall, Englewwod Cliffs, NJ, 1965).Google Scholar
14. Goodwin, L., Skinner, A.J. and Pettifor, D.G., Europhys. Lett. 9, 701 (1989).Google Scholar
15. Pasturel, A., Colinet, C., Nguyen Manh, D., Paxton, A.T. and van Schilfgaarde, M., Phys. Rev. B 52, 15176(1995).Google Scholar
16. Sluiter, M., Turchi, P.E.A., Pinski, F.J. and Stocks, G.M., J. of Phase Equilibria 13, 605 (1992).Google Scholar
17. Pasturel, A. and Hafner, J., Phys. Rev. B 34, 8357 (1986).Google Scholar
18. Maret, M. and Pasturel, A., J. de Physique 48, 1541 (1987).Google Scholar
19. Hausleitner, Ch. and Hafner, J., Phys. Rev. B 45, 115 (1992).Google Scholar
20. Maret, M., Pasturel, A., Dubois, J.M. and Chieux, P., J. Phys. (Paris) 50, 295 (1989).Google Scholar
21. Maret, M., Pomme, T., Pasturel, A. and Chieux, P., Phys. Rev. B 42, 1598 (1990).Google Scholar