Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-05T09:45:09.207Z Has data issue: false hasContentIssue false

Optimization of Sol-Gel Derived PZT thin Films by the Incorporation of Excess PBO

Published online by Cambridge University Press:  25 February 2011

G. Teowee
Affiliation:
Arizona Materials Laboratories, Department of Materials Science and Engineering, University of Arizona, Tucson, AZ 85721.
J. M. Boulton
Affiliation:
Arizona Materials Laboratories, Department of Materials Science and Engineering, University of Arizona, Tucson, AZ 85721.
D. R. Uhlmann
Affiliation:
Arizona Materials Laboratories, Department of Materials Science and Engineering, University of Arizona, Tucson, AZ 85721.
Get access

Abstract

A series of PZT precursor solutions was prepared which incorporated excess PbO to give the composition Pb1+xZr0.53Ti0.47O3+x, where 0 < × < 0.3. These solutions were spin coated on platinized Si wafers and fired at elevated temperatures up to 750C for 30 mins. After crystallization into single-phase perovskite, the films were studied using XRD, optical microscopy and electrical characterization techniques (hysteresis loops and dielectric properties). It was found that the presence of excess PbO significantly improved the PZT films in terms of phase assemblage, microstructure and electrical properties. Under optimized conditions, films with dielectric constants of around 3000 can be obtained.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Okayama, M. and Hamakawa, Y., Ferroelectrics, 118, 261 (1991).Google Scholar
2. Clark, L. T., Grondin, R. U. and Dey, S. K., Proc. of 1st IEE Intl. Conf. Artificial Neural Networks, London, 1989.Google Scholar
3. LaSerra, E. R., Charbouillot, Y., Baudry, P. and Aegerter, M. A., J. Non-cryst. Solids, 121. 323 (1990).Google Scholar
4. Higashino, H., Adachi, H., Setsune, K. and Wasa, K., Inst. Phys. Conf. Ser. No. 130, 23 (1989).Google Scholar
5. Teowee, G., Boulton, J. M., Bommersbach, W. M. and Uhlmann, D. R., “Second Harmonic Generation From PbTiO3-Based Ferroelectric Thin Films,” J. Non-cryst. Solids, in press.Google Scholar
6. Land, C. E., Butler, M. A. and Martin, S. J., Tech. Dig. IEDM 1989, 251.Google Scholar
7. de Araujo, C. A. P., McMillan, L. D., Melnick, B. M., Cuchiaro, J. D. and Scott, J. F., Ferroelectrics, 104, 241 (1990).Google Scholar
8. Sreenivas, K. and Sayer, M., J. Appl. Physics, 64, 1484 (1988).Google Scholar
9. Okada, A., J. Appl. Phys., 48, 2905 (1977).Google Scholar
10. Castellano, R. N. and Feinstein, L. G., J. Appl. Phys., 50, 4406 (1979).Google Scholar
11. Oikawa, M. and Toda, K., Appl. Phys. Lett., 29, 491 (1976).Google Scholar
12. Otsubo, S., Maeda, T., Minamikawa, T., Yonezawa, Y., Morimoto, A. and Shimizu, T., Jpn. J. Appl. Phys., 22, L133 (1990).Google Scholar
13. Mairie, B., Dallaire, S. and El-Assal, K., Mater. Lett., 5, 246 (1987).Google Scholar
14. Okada, M., Tominaga, T., Araki, T., Katayama, S. and Sakashita, Y., Jpn. J. Appl. Phys., 29, 718 (1990).CrossRefGoogle Scholar
15. Budd, K. D., Dey, S. K. and Payne, D. A., Br. Ceram. Proc., 36, 107 (1986).Google Scholar
16. Uhlmann, D. R., Teowee, G., Boulton, J. M. and Zelinski, B. J. J., Mat. Res. Soc. Symp. Proc, 180, 645 (1990).Google Scholar
17. Snow, G. S., J. Amer. Ceram. Soc, 56, 479 (1973).CrossRefGoogle Scholar
18. Song, B., Kim, D., Shirazaki, S. and Yamamura, H., J. Amer. Ceram. Soc, 72, 833 (1989).Google Scholar
19. Snow, G. S., J. Amer. Ceram. Soc, 57, 272 (1974).CrossRefGoogle Scholar
20. Lloyd, I. K., Kahn, M. and Lang, S., Cer. Trans., 11, 390 (1989).Google Scholar
21. Teowee, G., Boulton, J. M., Lee, S. C. and Uhlmann, D. R., “Electrical Characterization of Sol-gel Derived PZT Films,” Mater. Res. Soc. Proc. 243, in press.Google Scholar