Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T02:13:51.262Z Has data issue: false hasContentIssue false

A New Dielectric Material System of xLa(Mg1/2Ti1/2) O3−(1−X) CaTiO3 at Microvave Frequency

Published online by Cambridge University Press:  01 February 2011

Yuan-Bin Chen
Affiliation:
Department of Electrical Engineering, National Cheng Kung University, 1 University Rd., Tainan 70101, Taiwan
Cheng-Liang Huang
Affiliation:
Department of Electrical Engineering, National Cheng Kung University, 1 University Rd., Tainan 70101, Taiwan
Che-Win Row
Affiliation:
Department of Electrical Engineering, National Cheng Kung University, 1 University Rd., Tainan 70101, Taiwan
Get access

Abstract

The dielectric properties and the microstructures of xLa(Mg1/2Ti1/2)O3−(1−x)CaTiO3 ceramics with B2O3 additions (0.25wt%) prepared with conventional solid-state route have been investigated. Doping with B2O3 (0.25wt%) can effectively promote the densification and the dielectric properties of xLa(Mg1/2Ti1/2)O3−(1−x)CaTiO3 ceramics. It is found that xLa(Mg1/2Ti1/2)O3−(1−x)CaTiO3 ceramics can be sintered at 1400°C due to the liquid phase effect of B2O3 addition observed by Scanning Electronic Microscopy. At 1425°C, 0.5La(Mg1/2Ti1/2)O3−0.5CaTiO3 ceramics with 0.25 wt% B2O3 addition possesses a dielectric constant (εr) of 43, a Q×f value of 24470 (at 8GHz) and a temperature coefficients of resonant frequency (τf) of -8.94 ppm/°C. As an increasing the content of La(Mg1/2Ti1/2)O3, the highest Q×f value of 30824(GHz) could be achieved for X=0.7.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]. Desu, S. B. and O'bryan, H. M.: J. Am. Ceram. Soc. 68 (1985) 546 Google Scholar
[2]. Sagala, D. A. and Nambu, S.: J. Am. Ceram. Soc. 75 (1992) 2573 Google Scholar
[3]. Kageyama, K.: J. Am. Ceram. Soc. 75 (1992) 1767 Google Scholar
[4]. Cho, Seo-Yong, Kim, Chang-Hun, and Kim, Dong-Wan. Materials Research Society. Vol. 14. No 6.(1999)Google Scholar
[5]. Kakada, T., Wang, S.F., Syoshikawa, , Jang, S.T., Newnham, R. E., J. Am. Ceram. Soc., 77, 1909, (1994).Google Scholar
[6]. Kakada, T., Wang, S.F., Syoshikawa, , Jang, S.T., Newnham, R. E., J. Am. Ceram. Soc., 77, 2485, (1994).Google Scholar
[7]. Hirno, S. I., Takashi, , Hayashi, , Hattori, A., J. Am. Ceram. Soc., 74, 1320, (1991).Google Scholar
[8]. Tolmer, V., Desqardin, G., J. Am. Ceram. Soc., 80, 1981, (1997).Google Scholar
[9]. Hakki, B. W. and Coleman, P. D., IEEE Trans. Microwave Theory & Tech., 8, 402, (1960).Google Scholar
[10]. Tumura, H.: J. Am. Ceram. Soc. 73 (1994) 43 Google Scholar
[11]. Silverman, B. D., Phys. Rev., 125, (1962) 1921 Google Scholar