Hostname: page-component-7bb8b95d7b-s9k8s Total loading time: 0 Render date: 2024-10-02T20:36:42.687Z Has data issue: false hasContentIssue false

Nanocomposites nc-TiN/a-Si3N4/a- and nc-TiSi2 with Hardness Exceeding 100 GPa and High Fracture Toughness

Published online by Cambridge University Press:  21 February 2011

S. Vepřiek
Affiliation:
Institute for Chemistry of Inorganic Materials, Technical University Munich Lichtenbergstr. 4, D-85747 Garching b. Munich, Germany. E-mail: [email protected]
A. Niederhofer
Affiliation:
Institute for Chemistry of Inorganic Materials, Technical University, Munich, Lichtenbergstr. 4, D-85747 Garching b. Munich, Germany
K. Moto
Affiliation:
Institute for Chemistry of Inorganic Materials, Technical University, Munich, Lichtenbergstr. 4, D-85747 Garching b. Munich, Germany
P. Nesládek
Affiliation:
Institute for Chemistry of Inorganic Materials, Technical University, Munich, Lichtenbergstr. 4, D-85747 Garching b. Munich, Germany
H. Männling
Affiliation:
Institute for Chemistry of Inorganic Materials, Technical University, Munich, Lichtenbergstr. 4, D-85747 Garching b. Munich, Germany
T. Bolom
Affiliation:
Institute for Chemistry of Inorganic Materials, Technical University, Munich, Lichtenbergstr. 4, D-85747 Garching b. Munich, Germany
Get access

Abstract

In course of further development of our generic concept for the design of novel superhard nanocomposites [1,2] we have recently developed new multi-phase ultrahard nano-composite coatings with Vickers mirohardness of 80 to 105 GPa which is in the range of natural diamond. The coatings show a high elastic recovery of up to 90% upon a relatively large indentation deformation. The hardness measured by the depth sensing technique agree with those calculated from the area of the remaining pseudoplastic deformation. The very high apparent fracture toughness is illustrated by the absence of any radial cracks upon in-dentation with a large load of I N into 10.3 p.m thick film [3]. The unusual combination of high hardness, elastic recovery and apparent fracture toughness was attributed to the ample possibility of cracks deflection, meandering and termination during loading and cracks closure upon unloading [1,2,4]. The suggested nanostructure of the coatings has been elucidated on a basis of a complex analysis by means XRD, EDX, ERD, XPS and HR TEM.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Veprek, S., Reiprich, S. and Shizhi, Li, Appl. Phys. Lett. 66, 2640 (1995); S. Veprek and S. Reiprich, Thin Solid Films 268, 64 (1996); S. Veprek, M. Haussmann and S. Reiprich, J. Vac. Sci. Technol. A 14, 46 (1996).Google Scholar
[2] Veprek, S., Critical Review in J. Vac. Sci. Technol. A 17 (1999) (Sept./Oct.) in pressGoogle Scholar
[3] Our current work concentrates on the question if the absence of radial cracks is due to a high specific energy of crack propagation (‘toughness’ [4]) Kc (E/H)(P/a3/2 (E-elastic modulus, H-hardness, P-applied load, a-length of the radial crack) or to a high threshold of the cracks initiation (see below).Google Scholar
[4] Niederhofer, A., Nesladek, P., Mainnling, H., Moto, K., Veprek, S. and Jilek, M., ICMCTF 1999 (San Diego April 1999), Surf. Coatings Technol. in press.Google Scholar
[5] Hertzberg, R. W., Deformation and Fracture Mechanics of Engineering Materials, 3rd ed. (Wiley, New York, 1989).Google Scholar
[6] Kelly, A. and MacMillan, N. H., Strong Solids, 3rd. ed. (Clarendon Press, Oxford, 1986).Google Scholar
[7] Hall, E. O., Proc. Phys. Soc. B 64, 747 (1951).Google Scholar
[8] Petch, N. J., J. Iron Steel Inst. 174, 25 (1953).Google Scholar
[9] Lasalmonie, A. and Strudel, J.L., J. Mater. Sci. 21, 1837 (1986).Google Scholar
[10] Chokshi, A. H., Rosen, A., Karch, J. and Gleiter, H., Scripta Metal. 23, 1679 (1989).Google Scholar
[11] Siegel, R. W. and Fougere, G. E., NanoStructured Mater. 6, 205 (1995).Google Scholar
[12] Hahn, H. and Padmanabhan, K. A., Phil. Mag. B 76, 559 (1997).Google Scholar
[13] Yip, S., Nature 391, 532 (1998).Google Scholar
[14] Schiotz, J., Tolla, E. D. Di and Jacobsen, K. W., Nature 391, 561 (1998)Google Scholar
[15] Veprek, S., Haussmann, M., Reiprich, S., Shizhi, Li and Dian, J., Surf. Coatings Technol. 86/87, 394 (1996).Google Scholar
[16] Veprek, S., Nesladek, P., Niederhofer, A., Glatz, F., Jilek, M. and Sima, M., Surf. Coatings Technol. 108/109, 138 (1998).Google Scholar
[17] Holubar, P., Jilek, M. and Sima, M., Int. Conf. Metallurgical Coatings and Thin Films, San Diego, April 1999, Surf. Coatings Technol. (1999) in press.Google Scholar
[18] Gissler, W., Baker, M. A., Haupt, J., Gibson, P. N., Gilmore, R. and Mollart, T. P., Diamond Films and Technology, 7, 165 (1997).Google Scholar
[19] Mitterer, C., Losbichler, P., Hofer, F., Warbichler, P., Gibson, P. N. and Gissler, W., Vacuum 50, 313 (1998).Google Scholar
[20] Sung, Ch.-M. and Sung, M., Materials Chemistry and Physics, 43, 1 (1996).Google Scholar
[21] Wilks, J. and Wilks, E., Properties and Applications of Diamond (Butterworth-Heineman, Oxford 1991)Google Scholar
[22] Bokii, G.B., Kirova, N. F. and Nepsha, V. I., Sov. Phys. Dokladi, 24, 83 (1979).Google Scholar
[23] Gruen, D. M., MRS Bulletin 23, 32 (1998) No. 9, September.Google Scholar
[24] Tabor, G., The Hardness of Metals (Clarendon Press, Oxford, 1951).Google Scholar
[25] Christiansen, S., Albrecht, M., Strunk, H.P. and Veprek, S., J. Vac. Sci. Technol. B 16, 19 (1998).Google Scholar
[26] Zallen, R., The Physics ofAmorphous Solids (John Willey, New York 1983).Google Scholar
[27] Niederhofer, A., Nesladek, P., Männling, H.-D., Veprek, S. and Jilek, M., Int. Conf. Metallurgical Coatings and Thin Films, San Diego, April 1999, Surf. Coatings Technol., (1999) in press.Google Scholar
[28] Page, T. F. and Hainsworth, S. V., Surf. Coatings Technol. 61, 201 (1993).Google Scholar
[29] Veprek, S., Sarott, F.-A. and Iqbal, Z., Phys. Rev. 36, 3344 (1987).Google Scholar
[30] Ottel, H., Wiedemann, R. and Preissler, S., Surf. Coatings Technol. 74/75, 273 (1995).Google Scholar
[31] Herr, W. and Broszeit, E., Surf. Coatings Technol. 97, 335 (1997).Google Scholar
[32] Ponton, C. B. and Rawlings, R. D., Mater. Sci. Technol. 5, 865 (1989)Google Scholar
[33] Pharr, G. M., Mater. Sci. Eng. A 253, 151 (1998).Google Scholar
[34] Inoue, A., Kimura, H. M., Sasamori, K. and Matsumoto, T. 35, 85 (1994).Google Scholar