Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-23T07:48:59.190Z Has data issue: false hasContentIssue false

Multilayer Hybrid Structure of ZnO Nanorod Arrays Imbedded in TiO2 Network as Photoanode

Published online by Cambridge University Press:  20 March 2013

Chan-yan Huang
Affiliation:
National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
Yan Sun
Affiliation:
National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
Xin Chen
Affiliation:
National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
Ning Dai
Affiliation:
National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
Get access

Abstract

We developed a multilayer hybrid structure by imbedding ZnO nanorod arrays in TiO2 network for each layer, for the pourese of taking ZnO nanorods as the highway of electron transport. ZnO nanorods can be prepared by hydrothermal process, which is simple, low cost and easy control. The ZnO nanorod arrays were grown by reported hydrothermal method, then TiO2 network was constructed by spin-coating titanium precursor sol on ZnO nanorod arrays and calcining. The electrochemical impedance spectrum measurements were taken to study the electrical properties of this kind of hybrids, and the results indicated that the effective electron lifetime reaches a magnitude of microsecond which is similar to the pure ZnO nanorod arrays. It reveals to us that ZnO nanorods may dominate the electrical properties of this nano-hybrid structure.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

O'Regan, B., Grätzel, M., Nature 353, 737(1991).CrossRefGoogle Scholar
Yella, A., Lee, H.W., Tsao, H.N., Yi, C.Y., Chandiran, A.K., Nazeeruddin, M.K., Diau, E.W.G., Yeh, C.Y., Zakeeruddin, S. M., Grätzel, M., Science 334, 629(2011).CrossRefGoogle Scholar
Galoppini, E., Rochford, J., Chen, H., Saraf, G., Lu, Y., Hagfeldt, A., Boschloo, G., J. Phys. Chem. B 110, 16159(2006).CrossRefGoogle Scholar
Martinson, A. B. F, McGarrah, J. E., Parpia, M. O. K., Hupp, J. T., Phys. Chem. Chem. Phys. 8, 4655(2006).CrossRefGoogle Scholar
Martinson, A. B. F, Goes, M. S., Fabregat-Santiago, F., Bisquert, J., Pellin, M. J., Hupp, J. T., J. Phys. Chem. A 113, 4015(2009).CrossRefGoogle Scholar
Jennings, J. R., Ghicov, A., Peter, L. M., Schmuki, P., Walker, A. B., J. Am. Chem. Soc. 130, 13364(2008).CrossRefGoogle Scholar
Navas, J., Guillen, E., Alcantara, R., Fernandez-Lorenzo, C., Martin-Calleja, J., Oskam, G., Idigoras, J., Berger, T., Anta, J. A., J. Phys. Chem. Lett. 2, 1045(2011).CrossRefGoogle Scholar
Xu, C.; Wu, J.; Desai, U. V.; Gao, D. J. Am. Chem. Soc. 133, 8122(2011).CrossRefGoogle Scholar
Grätzel, M., J. Photochem. Photobiol., A 164, 3(2004).CrossRefGoogle Scholar
Kern, R., Sastrawan, R., Rerber, J., Stangl, R., Luther, J., Electrochimica Acta 47, 4213(2002).CrossRefGoogle Scholar