Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-29T08:17:26.872Z Has data issue: false hasContentIssue false

Modeling of a Surface Plasmon Polariton Interferometer

Published online by Cambridge University Press:  01 February 2011

Victor Coello*
Affiliation:
CICESE Monterrey, P. de Alba S/N Posgrado FCFM-UANL, C. P. 66450 S. N. de los Garza N. L., Mexico.
Thomas Søndergaard
Affiliation:
Micro Managed Photons A/S, Institute of Physics and Nanotechnology, Aalborg University, Pontoppidanstræde 103, DK-9220 Aalborg Øst, Denmark
Sergey I. Bozhevolnyi
Affiliation:
Micro Managed Photons A/S, Institute of Physics and Nanotechnology, Aalborg University, Pontoppidanstræde 103, DK-9220 Aalborg Øst, Denmark
*
* e-mail: [email protected], Phone: +52 81 8478 0507, Fax: +52 81 8478 0508
Get access

Abstract

We model the operation of a micro-optical interferometer for surface plasmon polaritons (SPPs) that comprises an SPP beam-splitter formed by equivalent scatterers lined up and equally spaced. The numerical calculations are carried out by using a vector dipolar model for multiple SPP scattering. The SPP beam-splitter is simulated for different angles of the incident SPP beam, radii of the particles, and inter-particle distances in order to find a suitable configuration for realization of a 3dB SPP beam-splitter. The results obtained are in good agreement with experimental data available in the literature. The feasibility of fabricating an interferometer is thereby corroborated and the calculated intensity maps are found rather similar to those experimentally reported.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Raether, H., Surface Plasmons, Springer Tracts in Modern Physics Vol. 111.Google Scholar
2. Smolanyinov, I. I., Mazzoni, D. L., and Davis, C. C., Phys. Rev. Lett. 77, 3877 (1996).Google Scholar
Bozhevolnyi, S. I. and Pudonin, F. A., Phys. Rev. Lett. 78, 2823 (1997).Google Scholar
Bozhevolnyi, S. I. and Coello, V., Phys. Rev. B. 58, 10899 (1998).Google Scholar
3. Bozhevolnyi, S. I., Erland, J.E., Leossson, K., Skovgaard, P. M. W., and Hvam, J. M.. Phys. Rev. Lett. 86, 3008 (2001).Google Scholar
Bozhevolnyi, S., Volkov, V., and Leosson, K., Opt. Commun. 196, 41 (2001).Google Scholar
4. Lamprecht, B., Krenn, J. R., Schider, G., Ditlbacher, H., Salemo, M., Felidj, N, Leitner, A., Aussenegg, F. R., and Weeber, J.C. App. Phys. Lett. 79, 51 (2001).Google Scholar
5. Shchegrov, A. V., Novikov, I. V., and Maradudin, A. A., Phys. Rev. Lett. 78, 4269 (1997).Google Scholar
6. Bozhevolnyi, S. I. and Coello, V., Phys. Rev. B 58, 10 899 (1998).Google Scholar
Bozhevolnyi, S. I. and Volkov, V., Opt. Commun. 198, 241 (2001).Google Scholar
7. Søndergaard, T. and Bozhevolnyi, S. I., Phys. Rev. B. 67, 165405 (2003).Google Scholar
8. Dittlbacher, H., Krenn, J.R., Shider, G., Leitner, A., and Aussenegg, F.R.. Appl. Phys. Lett. 81 1762 (2002).Google Scholar
9. Keller, O., Xiao, M., and Bozhevolnyi, S., Surf. Sci. 280, 217 (1993).Google Scholar
Li, Z., Gu, B., and Yang, G., Phys. Rev. B 55, 10883 (1997).Google Scholar
Gay-Balmaz, P. and Martin, O., Opt. Commun. 184, 37 (2000).Google Scholar