Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T09:00:48.347Z Has data issue: false hasContentIssue false

Micro-ATR-IR as a Probe of BCB Layers for MCM-D/L Applications

Published online by Cambridge University Press:  15 February 2011

C. E. Mohler
Affiliation:
The Dow Chemical Company, Midland, MI 48674
A. J. G. Strandjord
Affiliation:
The Dow Chemical Company, Midland, MI 48674
D. W. Castillo
Affiliation:
The Dow Chemical Company, Midland, MI 48674
M. R. Stachowiak
Affiliation:
The Dow Chemical Company, Midland, MI 48674
R. H. Heistand
Affiliation:
The Dow Chemical Company, Midland, MI 48674
P. E. Garrou
Affiliation:
The Dow Chemical Company, Research Triangle Park, NC 27709
T. G. Tessier
Affiliation:
Motorola, Inc., Corporate Manufacturing Research Center, 1301 E. Algonquin Rd, Schaumburg, IL 60196
Get access

Abstract

To lower the cost of multichip module packaging, hybridized substrate technologies have recently been reported which blend the desirable aspects of D and L fabrication (MCM-D/L). High performance dielectrics such as Cyclotene™3022 and photosensitive BCB have been shown to be compatible with laminate substrates used in MCM-DIL, however the cure levels of the dielectric on the laminates must be known for optimum processing.

In this paper, the capability of attenuated reflection IR microscopy (micro-ATR-IR) to probe thin films of BCB polymers is demonstrated. This technique enables the polymer layer to be probed regardless of the characteristics of the substrate. Cure levels of both Cyclotene™ 3022 and photodefinable BCB polymer films are obtained with micro-ATR-IR on both silicon and laminate substrate. Micro-ATR-IR is also used to probe a rapid thermal cure of Cyclotene Tm 3022 and photodefinable BCB layers on copper-clad polyimide laminate; these measurements cannot be made with transmission IR due to the high reflectivity of the substrate.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tsukada, Y., Tsuchida, S., Mashimoto, Y., IMC 1992 Proc., pp. 252–257 (1992).Google Scholar
2. Tessier, T. G., Myszka, E., Strandjord, A. J., Mohler, C., Heistand, R. H., Garrou, P. E., Ogonquit Workshop, 6/93; T. G. Tessier, E. G. Myszka, Proceedings of the Int'l Conf on Multichip Modules, ISHM/IEPS, Denver, April 14–16, 1993, pp. 200–207.Google Scholar
3. Stokich, T. M., Lee, W. M., Peters, R. A., Proceedings Materials Research Society, Anaheim, CA, Vol.227, April 1991, pp. 103–114.Google Scholar
4. Moyer, E. S., et al., presented at the 1993 MRS Fall Meeting, Boston, MA, 1993.Google Scholar
5. Harrick, N. J., Appl. Spectros., 31 (1977), p. 548.CrossRefGoogle Scholar
6. Takahashi, T., Heistand, R. H., DeVellis, R., Manial, T. A., Kennedy, A. P., Garrou, P. E., Stokich, T. M., Townsend, P. H., Adema, G. M., Berry, M. J., Turlik, I., Proceedings 7th International Microelectronics Conference (IMC), Pacifico Yokohama, 1992, pp. 325–330.Google Scholar
7. Garrou, P. E., Heistand, R. H., Dibbs, M., Manial, T. A., Mohler, C., Stokich, T., Townsend, P. H., Adema, G. M., Berry, M. J., Turlik, I., Proceedings ECTC, San Diego, May 1992, pp. 770–776.Google Scholar