Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-20T06:15:35.420Z Has data issue: false hasContentIssue false

Memory Effect in Simple Cu Nanogap Junction

Published online by Cambridge University Press:  01 February 2011

Hiroshi Suga
Affiliation:
[email protected], National Institute Science and Technology(AIST), Nanosystem Research Institute, Tsukuba, Japan
Masayo Horikawa
Affiliation:
[email protected], National Institute Science and Technology(AIST), Nanosystem Research Institute, Tsukuba, Japan
Hisao Miyazak
Affiliation:
[email protected], National Institute for Materials Science (NIMS), Research Center for Materials Nanoarchitectonics (MANA), Tsukuba, Japan
Shunsuke Odaka
Affiliation:
[email protected], National Institute for Materials Science (NIMS), Research Center for Materials Nanoarchitectonics (MANA), Tsukuba, Japan
Kazuhito Tsukagoshi
Affiliation:
[email protected], National Institute for Materials Science (NIMS), Research Center for Materials Nanoarchitectonics (MANA), Tsukuba, Japan
Tetsuo Shimizu
Affiliation:
[email protected], National Institute Science and Technology(AIST), Nanosystem Research Institute, Tsukuba, Japan
Yasuhisa Naitoh
Affiliation:
[email protected], National Institute Science and Technology(AIST), Nanosystem Research Institute, Tsukuba, Japan
Get access

Abstract

We have investigated the resistance switching effect in Cu nanogap junction. Nanogap structures were created by means of electromigration and their electrical properties were measured in a high vacuum chamber. The measured current-voltage characteristics exhibited a clear negative resistance and memory effect with a large on-off ratio of over 105. The estimation from I-V curves indicates that the resistance switching was caused by the gap size change, which implies that the nanogap switching (NGS) effect also occurs in Cu electrodes, a popular wiring material in an integrated circuit.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Naitoh, Y, Horikawa, M, Abe, H, and Shimizu, T, Nanotechnology 17, 5669 (2006).10.1088/0957-4484/17/22/022Google Scholar
2 Furuta, S., Takahashi, T., Naitoh, Y., Horikawa, M., Shimizu, T., and Ono, M., Jap. J. Appl. Phys. 47, 1806 (2008).10.1143/JJAP.47.1806Google Scholar
3 Masuda, Y., Takahashi, T., Furuta, S., Ono, M., Shimizu, T., and Naitoh, Y., Appl. Surf. Sci. 256, 1028 (2009).10.1016/j.apsusc.2009.05.128Google Scholar
4 Li, Y., Sinitskii, A., and Tour, J. M., Nat. Mater. 7, 966 (2008).10.1038/nmat2331Google Scholar
5 Naitoh, Y., Morita, Y., Horikawa, M., Suga, H., and Shimizu, T., Appl. Phys. Express. 1, 103001 (2008).10.1143/APEX.1.103001Google Scholar
6 The International Technology Roadmap for Semiconductors, Semiconductor Industry Association, San Jose, CA 2005.Google Scholar
7 Strachanan, D. R., Smith, D. E., Johnston, D. E., Park, T. H., Therien, M. J., Bonnell, D. A., and Johnsonb, A. T., Appl. Phys. Lett. 86, 043109 (2005).Google Scholar
8 Esen, G. and Fuhrer, M. S., Appl. Phys. Lett. 87, 263101 (2005).10.1063/1.2149174Google Scholar
9 Heersche, H., Lientschnig, G., O'Neill, K., Zant, H., and Zandbergen, H., Appl. Phys. Lett. 91, 072107 (2007).10.1063/1.2767149Google Scholar
10 Hadeed, F. O. and Durkan, C., Appl. Phys. Lett. 91, 123120 (2007).10.1063/1.2785982Google Scholar
11 Simmons, G., J. Appl. Phys. 34, 1793 (1963).Google Scholar