Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T13:58:21.731Z Has data issue: false hasContentIssue false

Memory Effect in Organic Diodes Containing Self-assembled Gold Nanoparticles

Published online by Cambridge University Press:  01 February 2011

Hai Ping Wang
Affiliation:
[email protected], Université de Montréal, chimie, C.P. 6128 Succursale Centre-ville, Montreal, H3T 1J4, Canada
Sébastien Pigeon
Affiliation:
Sébastien Pigeon [email protected], OLA Display Corp, 1000 St-Antoine Ouest, suite 106, Montréal, H3C 3R7, Canada
Ricardo Izquierdo
Affiliation:
[email protected], Université du Québec á Montréal, Département d'informatique, Case postale 8888, Succursale Centre-ville, Montréal, H3C 3P8, Canada
Richard Martel
Affiliation:
[email protected], Université de Montréal, Regroupement Québécois sur les Matériaux de Pointe et département de Chimie, C.P. 6128 Succursale Centre-ville, Montréal, H3T 1J4, Canada
Get access

Abstract

Electrical bistability is reported in metal-organic-metal diodes. The device consists of two Al electrodes separated by an organic layer that contains embedded Au nanoparticles (NPs) supported by parylene nanopillars. This paper presents results with two different organic materials: 2-amino-4, 5-imidazoledicarbonitrile (AIDCN) and aluminum tris(8-hydroxyquinoline) (Alq3). Electrical characterization of the diodes shows bistability with two well-defined states with high (OFF) and low (ON) resistances. The ON/OFF ratio is 104 and current-voltage (I-V) curves show a negative differential resistance (NDR). The diodes can be programmed in either the ON or the OFF state and maintained it for at least 8 months in air without any evidence of degradation. This conspicuous memory effect is rationalized in terms of charge storage mediated by the oxidation/reduction of the NPs. The fabrication method is general and provides a good control on both the size-uniformity and the position of the Au NPs embedded in the organic materials. The diode characteristics with different NP density are also addressed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ma, L.P., Liu, J. and Yang, Y., Appl. Phys. Lett. 80, 2997 (2002).Google Scholar
2. Ma, L.P., Liu, J., Pyo, S., Xu, Q. and Yang, Y., Mol. Cryst. Liq. Cryst., 378 185 (2002).Google Scholar
3. Ma, L.P., Pyo, S., Ouyang, J., Xu, Q. and Yang, Y., Appl. Phys. Lett. 82, 1419 (2003).Google Scholar
4. Bozano, L.D., Kean, B.W., Deline, V.R., Salem, J.R. and Scott, J.C., Appl. Phys. Lett. 84, 607 (2004).Google Scholar
5. Bozano, L.D., Kean, B.W., Beinhoff, M., Carter, K.R., Rice, P.M. and Scott, J.C., Adv. Funct. Mater., 15, 1933 (2005).Google Scholar
6. Tondelier, D., Lmimouni, K., Vuillaume, D., Fery, C. and Hass, G., Appl. Phys. Lett. 85, 5763 (2004).Google Scholar
7. Wang, H.P., Pigeon, S., Izquierdo, R., and Martel, R., Appl. Phys. Lett. 89, 183502 (2006).Google Scholar
8. Malynych, S., Luzinov, I. and Chumanov, G., J. Phys. Chem. B 106, 1280 (2002).Google Scholar
9. Simmons, J.G. and Verderber, R.R., Proc. R. Soc. London, Ser. A 301, 77 (1967).Google Scholar