No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
A combined experimental and numerical approach has been devised to understand the abrasion aspects of material removal mechanisms of ductile copper film on silicon wafers during Chemical mechanical planarization. The experimentally observed trends of the deformation patterns and the force profiles from micro and nano-single scratch experiments are used to guide numerical simulation using finite element simulation at the continuum scale and molecular dynamics simulation at the atomistic scale. Such integrated approach has provided several plausible mechanisms for material detachments through a combination of surface plowing and shearing under the abrasive particles. The gained insights can be integrated into mechanismbased models for the material removal rate in these processes as well as addressing possible defect formation.