Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T18:48:00.371Z Has data issue: false hasContentIssue false

Measurement of Valence Band Offset in Strained GexSi1−x/Si Heterojunctions

Published online by Cambridge University Press:  22 February 2011

S. Khorram
Affiliation:
Device Research Laboratory, 7619 Boelter Hall, University of California, Los Angeles, CA 90024
C. H. Chern
Affiliation:
Device Research Laboratory, 7619 Boelter Hall, University of California, Los Angeles, CA 90024
K. L. Wang
Affiliation:
Device Research Laboratory, 7619 Boelter Hall, University of California, Los Angeles, CA 90024
Get access

Abstract

The valence band discontinuity ΔEV in the coherently strained GexSi1−x/Si heterostruc-ture is determined using I-V-T measurement. The electrical measurements of the band discontinuity of the pseudomorphic layers are difficult due to the thin layer imposed by the strain. Recently, low temperature growth of thick layer (>100 nm) of coherently strained GexSi1−x on Si has been achieved and thus made it possible for an accurate electrical measurement of band offset. The results obtained are in good agreement with the theoretical calculations by pseudopotential method.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] People, R.. Phys. Rev. B, 32 (2), 1405, 1985.Google Scholar
[2] Lang, D. V., People, R., Bean, J. C., and Sergent, A. M.. Appl. Phys. Lett., 47, 1333, 1985.Google Scholar
[3] People, R., Bean, J. C., and Lang, D. V.. In Proc. 1st Int. Symp. Silicon MBE, Pennington, NJ., page 364, 1985.Google Scholar
[4] Van de Walle, C. G. and Martin, R. M.. Phys. Rev., B34, 5621, 1986.CrossRefGoogle Scholar
[5] People, R., Bean, J. C., and Lang, D. V.. Proc. Inc. Conf, on Physics of Semiconductors, 2, 767, 1986.Google Scholar
[6] Ni, W. -X., Knall, J., and Hansson, G. V.. Phys. Rev. B, 36 (14), 7744, 1987.Google Scholar
[7] Schwartz, G. P., Hybertsen, M. S., Bevk, J., Nuzzo, R.G., Mannaerts, J. P. and Gualtieri, G. J.. Phys. Rev. B, 39 (2), 1235, 1989.Google Scholar
[8] Yu, E. T., Croke, E. T., McGill, T. C. and Miles, R. H.. Appl. Phys. Lett, 56 (6), 569, 1990.Google Scholar
[9] Batey, J., Wright, S. L., and DiMaria, D. J.. J. Appl Phys., 57, 484, 1985.Google Scholar
[10] Hickmott, T. W. and Solomon, P. M.. J. Appl. Phys., 57 (8), 2844, 1985.Google Scholar
[11] Chern, C. H., Wang, K. L., Nicolet, M. A. and Bai, G.. to be published.Google Scholar
[12] Batey, J., and Wright, S. L.. J. Appl. Phys., 59, 200, 1986.Google Scholar