Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-06T10:15:53.315Z Has data issue: false hasContentIssue false

Materials and Physical Properties of Novel High-k and Medium-k Gate Dielectrics

Published online by Cambridge University Press:  21 March 2011

Ran Liu
Affiliation:
DigitalDNA Laboratories, Motorola, Mesa, AZ 85202, USA
Stefan Zollner
Affiliation:
DigitalDNA Laboratories, Motorola, Mesa, AZ 85202, USA
Peter Fejes
Affiliation:
DigitalDNA Laboratories, Motorola, Mesa, AZ 85202, USA
Rich Gregory
Affiliation:
DigitalDNA Laboratories, Motorola, Mesa, AZ 85202, USA
Shifeng Lu
Affiliation:
DigitalDNA Laboratories, Motorola, Mesa, AZ 85202, USA
Kim Reid
Affiliation:
DigitalDNA Laboratories, Motorola, Mesa, AZ 85202, USA
David Gilmer
Affiliation:
DigitalDNA Laboratories, Motorola, Mesa, AZ 85202, USA
Bich-Yen Nguyen
Affiliation:
DigitalDNA Laboratories, Motorola, Mesa, AZ 85202, USA
Zhiyi Yu
Affiliation:
Jay Curless, Alex Demkov, Jeff Finder, Kurt Eisenbeiser Physical Science Research Laboratories, Motorola, Tempe, AZ 85202, USA
Ravi Droopad
Affiliation:
Jay Curless, Alex Demkov, Jeff Finder, Kurt Eisenbeiser Physical Science Research Laboratories, Motorola, Tempe, AZ 85202, USA
Get access

Abstract

Rapid shrinking in device dimensions calls for replacement of SiO2 by new gate insulators in future generations of MOSFETs. Among many desirable properties, potential candidates must have a higher dielectric constant, low leakage current, and thermal stability against reaction or diffusion to ensure sharp interfaces with both the substrate Si and the gate metal (or poly-Si). Extensive characterization of such materials in thin-film form is crucial not only for selection of the alternative gate dielectrics and processes, but also for development of appropriate metrology of the high-k films on Si. This paper will report recent results on structural and compositional properties of thin film SrTiO3 and transition metal oxides (ZrO2and HfO2).

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schulz, M., Nature, 399 729730 (1999).Google Scholar
2. Robertson, John, J. Vac. Sci. Technol. B18, p.1785 (2000).Google Scholar
3. Luan, H.F., Wu, B.Z., Kang, L.G., Kim, B.Y., Vrtis, R., Roberts, D. and Kwong, D.L.. IEDM. Tech. Dig, p.609 (1998).Google Scholar
4. He, B., Ma, T., Cambell, S.A. and Gladfelter, W.L.. IEDM. Tech. Dig, p. 1038 (1998).Google Scholar
5. Qi, W.J., Nieh, R., Lee, B.H., Kang, L., Jeon, Y., Onishi, K., Ngai, T., Banerjee, S., and Lee, J.C., Proc. International Electron Devices Meeting 1999, IEEE, Piscataway, NJ, USA, p.145.Google Scholar
6. Kang, L., Jeon, Y., Onishi, K., Lee, B.H., Qi, W.J., Nieh, R., Gopalan, S., Lee, J.C., 2000 Symposium on VLSI Technology. Tech. Dig., p.44.Google Scholar
7. Wilk, G.D., and Wallace, R.M.. Appl. Phys. Lett, 74, p. 2854 (1999).Google Scholar
8. Chen, J.C., Shen, G.H. and Chen, L.J.. Appl. Surf. Sci, 142, p.120 (1999).Google Scholar
9. Osten, H.J., Liu, J.P., Gaworzewski, P., Bugiel, E., and Zaumseil, P., Proc. International Electron Devices Meeting 1999, IEEE, Piscataway, NJ, USA, p.653.Google Scholar
10. Manchanda, L., Lee, W.H., Bower, J.E., Bauman, F.H., Brown, W.L.. IEDM. Tech. Dig., p. 605 (1998).Google Scholar
11. McKee, R.A., Walker, F.J., and Chisholm, M.F.. Phys. Rev. Lett. 81, p. 3014 (1998).Google Scholar
12. Yu, Z., Ramdani, J., Curless, J.A., Overgaard, C.D., Finder, J.M., Droopad, R., Eisenbeiser, K.W., Hallmark, J.A., Ooms, W.J., and Kaushik, V., J. Vac. Sci. Technol. B18, p. 2139 (2000).Google Scholar
13. Chambers, S.A., Liang, Y., Yu, Z., Droopad, R., Ramdani, J., and Eisenbeiser, K., Appl. Phys. Lett. 77, 1662 (2000).Google Scholar
14. Feinberg, A. and Perry, C.H., J. Phys. Chem. Solids, 42, p. 513 (1981).Google Scholar