Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-16T16:16:10.606Z Has data issue: false hasContentIssue false

Local Self-Order Observed During Chemical Vapor Deposition of Silicon Quantum Dots for Application in Nanocrystal Memories

Published online by Cambridge University Press:  01 February 2011

Rosaria A. Puglisi
Affiliation:
CNR-IMM, Sezione di Catania, Str.le Primosole 50 95121 Catania, Italy
Giuseppe Nicotra
Affiliation:
CNR-IMM, Sezione di Catania, Str.le Primosole 50 95121 Catania, Italy
Salvatore Lombardo
Affiliation:
CNR-IMM, Sezione di Catania, Str.le Primosole 50 95121 Catania, Italy
Barbara De Salvo
Affiliation:
CEA-LETI, Grenoble, France
Cosimo Gerardi
Affiliation:
STMicroelectronics, Str.le Primosole 50 95121 Catania, Italy.
Get access

Abstract

A systematic study on the Si dot formation after chemical vapor deposition on silicon oxide substrates is presented. The process has been followed from the early stages of the dot formation up to 25% of coverages. Structural characterization has been performed by means of energy filtered transmission electron microscopy, which allowed us to observe dot sizes down to 0.5 nm in radius. The nanodots are shown to be surrounded by a depleted zone, where no new Si dots are observed to nucleate. This has been attributed to the adatoms capture mechanism by pre-existing dots, during the deposition. The dot radius and the capture size are shown to collapse onto the same curve, thus indicating the scaling behavior of the process. The adatom diffusion process is shown to restrict the number of nucleation sites, the final dot size and the dot position, thus driving the process toward partial self-order.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tiwari, S., Rana, F., Chan, K., Hanafi, H., Chan, W., Buchanan, D., Int. Electron. Dev. Meet. Proc. 521 (1995).Google Scholar
2. Yano, K., Ishii, T., Sano, T., Mine, T., Murai, F., Hashimoto, T., Kobayashi, T., Kure, T., Seki, K., Proc. IEEE 87, 633 (1999).Google Scholar
3. Gerardi, C., Ammendola, G., Melanotte, M., Lombardo, S., Crupi, I., Rimini, E., European SolidState Devices Research Conference Proc., 475 (2002).Google Scholar
4. DeSalvo, B., Gerardi, C., Lombardo, S., Baron, T., Perniola, L., Mariolle, D., Mur, P., Toffoli, A., Gely, M., Semeria, M.N., Deleonibus, S., Ammendola, G., Ancarani, V., Melanotte, M., Bez, R., Baldi, L., Corso, D., Crupi, I., Puglisi, R.A., Nicotra, G., Rimini, E., Mazen, F., Ghibaudo, G., Pananakakis, G., Monzio Compagnoni, C., Ielmini, D., Spinelli, A., Lacaita, A., Wan, Y.M., VanderJeugd, K., to be published in Int. Electron. Dev. Meeting Proc. (2003).Google Scholar
5. De Blauwe, J., Ostraat, M., Green, M.L., Weber, G., Sorsch, T., Kerber, A., Klemens, F., Cirelli, R., Ferry, E., Grazul, J.L., Baumann, F., Kim, Y., Mansfield, W., Bude, J., Lee, J.T.C., Hillenius, S.J., Flagan, R.C., Atwater, H.A., Int. Electron. Dev. Meeting Proc. (2000).Google Scholar
6. Baron, T., Martin, F., Mur, P., Wyon, C., Dupuy, M., J. Cryst. Growth 209, 1004 (2000).Google Scholar
7. Madhukar, S., Smith, K., Muralidhar, R., O'Meara, D., Sadd, M., Nguyen, B.-Y., White, B., Jones, B., Mater. Res. Soc. Symp. Proc. 638, F5.2.1 (2001).Google Scholar
8. Nicotra, G., Puglisi, R.A., Lombardo, S., Spinella, C., Vulpio, M., Ammendola, G., Bileci, M., Gerardi, C., accepted by Journal of Applied Physics.Google Scholar
9. Puglisi, R.A., Nicotra, G., Lombardo, S., Spinella, C., Ammendola, G., Bileci, M., Gerardi, C., Surface Science 550(1–3), 119 (2004).Google Scholar
10. Puglisi, R.A., Lombardo, S., Nicotra, G., Spinella, C., Ammendola, G., Gerardi, C., accepted by Physical Review B. Google Scholar
11. Ratsch, C. and Venables, J. A., J. Vac. Sci. Technol. A 215, S96 (2003)Google Scholar
12. Lowes, T.D., Journal of Applied Physics 73(10), 4937 (1993).Google Scholar
13. Carlow, G.R., Barel, R.J., Zinke-Allmang, M., Physical Review B 56(19), 12519 (1997).Google Scholar
14. Brinkmann, M., Biscarini, F., Taliani, C., Aiello, I., Ghedini, M., Physical Review B 61(24), R16339 (2000).Google Scholar
15. Steimle, R.F., Rao, R., Hradsky, B., Straub, S., Muralidhar, R., Sadd, M., White, B., Swift, C., Yater, J., Altmeyer, S., Wang, X.D., Hooker, J., Merchant, T., Bagchi, S., Kawashima, T., Tanaka, S., Sakai, J. and Mashiro, S., invited talk at NEOP Workshop, October 6–9th, 2002, Dresden, Germany.Google Scholar
16. Weaire, D., Kermode, J.P. and Weichert, J., Philosophical Magazine B, 53, L101 (1986).Google Scholar
17. Mulheran, P.A., Blackman, J.A., Philosophical Magazine Letters 72(1), 55 (1995).Google Scholar
18. Mulheran, P.A., Blackman, J.A., Physical Review B 53(15), 10261 (1996).Google Scholar