Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-23T14:10:02.880Z Has data issue: false hasContentIssue false

Local Bonding Asymmetries in Ge-As-Se Glasses

Published online by Cambridge University Press:  31 January 2011

Eldar Mammadov
Affiliation:
[email protected]@physics.ab.az, Institute of Physics, Baku, Azerbaijan
Craig Taylor
Affiliation:
[email protected], Colorado School of Mines, Physics, Golden, Colorado, United States
David Baker
Affiliation:
[email protected], Colorado School of Mines, Physics, Golden, Colorado, United States
David Bobela
Affiliation:
[email protected], Colorado School of Mines, Physics, Golden, Colorado, United States
Arneyl Reyes
Affiliation:
[email protected], NHMFL, Tallahasse, Florida, United States
Philip Kuhns
Affiliation:
[email protected], NHMFL, Tallahasse, Florida, United States
Salima Mehdiyeva
Affiliation:
[email protected], Institute of Physics, Baku, Azerbaijan
Get access

Abstract

High magnetic fields up to 22 T have been applied to determine the local bonding asymmetries in the Ge2As2Se7 and Ge2As2Se5 glasses by 75As NMR. The results are analyzed using computer simulations of the line-shape. The asymmetry parameter η of the electric field gradient at arsenic sites in Ge2As2Se7 is found to be about 0.2, indicating that the dominant arsenic structural units in the composition are nearly axially symmetric pyramids. In the Ge2As2Se5 glass, however, the 75As NMR spectrum exhibits no well-resolved structure, revealing the existence of highly asymmetric sites. The experimental data are fitted using the previously obtained distribution of quadrupole coupling constants from pulsed 75As NQR experiments. These NMR simulations assume a broad distribution of the asymmetry parameter. The results are in agreement with the NQR studies in the same compositions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Rubinstein, Mark and Taylor, P. C., Phys. Rev B 9, 4258 (1974).Google Scholar
2 Jellison, G. E., Petersen, G. L., Taylor, P. C., Phys. Rev. Lett. 42, 1413 (1979).Google Scholar
3 Szeftel, J. and Alloul, H., Phys. Rev. Lett. 42, 1691 (1979).Google Scholar
4 Rabbani, S. R., Caticha, N., Santos, J. G., Pusiol, D. J., Phys. Rev. B 51, 8848 (1994).Google Scholar
5 Mao, D. and Bray, P. J., J. Non-Cryst. Solids 144, 217 (1992).Google Scholar
6 Korneva, I., Ostafin, M., Sinyavsky, N., Nogaj, B., Maækowiak, M., Solid State Nucl. Mag. Res. 31, 119 (2007).Google Scholar
7 Gravina, S. J., Bray, Phillip J., Petersen, G. L., J. Non-Cryst. Solids 123, 165 (1990).Google Scholar
8 Ahn, E., Williams, G. A.. Taylor, P. C., Georgiev, D. G., Boolchand, P., Schwickert, B. E., Cappelletti, R L., J. Non-Cryst. Solids 299302, 958 (2002).Google Scholar
9 Das, T. P. and Hahn, E. L., Nuclear Quadrupole Resonance Spectroscopy, Solid State Physics Suppl. 1, edited by Seitz, F. and Turnbull, D. (Academic, New York, 1958).Google Scholar
10 Taylor, P. C., Baugher, J. F., Kriz, H. M., Chem. Rev. 75, 203 (1975).Google Scholar
11 Taylor, P. C., Hari, P., Klienhammes, A., Kuhns, P. L., Moulton, W. G., Sullivan, N. S., J. Non-Cryst. Solids 227230, 770 (1998).Google Scholar
12 Saleh, Z. M., Williams, G. A., and Taylor, P. C., Phys. Rev. B 40, 10557 (1989).Google Scholar
13 Mammadov, E.. Taylor, P. C. (to be published).Google Scholar
14 Mammadov, E. and Taylor, P. C., J. Non-Cryst. Solids 354, 2732 (2008).Google Scholar
15 Rosenhahn, C., Hayes, S., Brunklaus, G., and Eckert, H. in Phase Transitions and Selforganisation in Electronic and Molecular Networks ed. by Phillips, J. C. and Thorpe, M. F., Springer, New-York (2001) 450 p.Google Scholar
16 Zallen, R., The Physics of Amorphous Solids, Wiley-VCH, Weinheim (2004).Google Scholar
17 Su, T., Hari, P., Ahn, E., Taylor, P. C., Kuhns, P. L., Moulton, W. G., and Sullivan, N. S., Phys. Rev. B 67, 085203 (2003).Google Scholar
18 Borisova, Z. U., Glassy Semiconductors (Plenum Press, New York, 1981).Google Scholar