Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T07:41:10.460Z Has data issue: false hasContentIssue false

Ionic conductivity in nanocrystalline Gd doped ceria

Published online by Cambridge University Press:  20 February 2017

Gianguido Baldinozzi
Affiliation:
Matériaux fonctionnels pour l'énergie, SPMS, CNRS-Ecole Centrale Paris, 92295 Châtenay-Malabry & DEN/DANS/DMN/SRMA/LA2M, CEA Saclay, 91191 Gif-sur-Yvette, France
David Simeone
Affiliation:
Matériaux fonctionnels pour l'énergie, SPMS, CNRS-Ecole Centrale Paris, 92295 Châtenay-Malabry & DEN/DANS/DMN/SRMA/LA2M, CEA Saclay, 91191 Gif-sur-Yvette, France
Dominique Gosset
Affiliation:
Matériaux fonctionnels pour l'énergie, SPMS, CNRS-Ecole Centrale Paris, 92295 Châtenay-Malabry & DEN/DANS/DMN/SRMA/LA2M, CEA Saclay, 91191 Gif-sur-Yvette, France
Mickael Dollé
Affiliation:
Matériaux fonctionnels pour l'énergie, SPMS, CNRS-Ecole Centrale Paris, 92295 Châtenay-Malabry & DEN/DANS/DMN/SRMA/LA2M, CEA Saclay, 91191 Gif-sur-Yvette, France
Georgette Petot-Ervas
Affiliation:
Matériaux fonctionnels pour l'énergie, SPMS, CNRS-Ecole Centrale Paris, 92295 Châtenay-Malabry & DEN/DANS/DMN/SRMA/LA2M, CEA Saclay, 91191 Gif-sur-Yvette, France
Get access

Abstract

We have synthesized Gd-doped ceria polycrystalline samples (5, 10, 15 %mol), having relative densities exceeding 95% and grain sizes between 30 and 160 nm after axial hot pressing (750 °C, 250 MPa). The samples were prepared by sintering nanopowders obtained by sol-gel chemistry methods having a very narrow size distribution centered at about 16 nm. SEM and X-ray diffraction were performed to characterize the sample microstructures and to assess their structures. We report ionic conductivity measurements using impedance spectroscopy. It is important to investigate the properties of these systems with sub-micrometric grains and as a function of their composition. Therefore, samples having micrometric and nanometric grain sizes (and different Gd content) were studied. Evidence of Gd segregation near the grain boundaries is given and the impact on the ionic conductivity, as a function of the grain size and Gd composition, is discussed and compared to microcrystalline samples.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

i Baldinozzi, G., Simeone, D., Gosset, D., Dutheil, M., Neutron Diffraction Study of the Size-Induced Tetragonal to Monoclinic Phase Transition in Zirconia Nanocrystals, Phys. Rev. Let. 90 (2003) 216103Google Scholar
ii Simeone, D., Baldinozzi, G., Gosset, D., LeCaer, S., Mazérolles, L., Nanostructuration of zrconia under irradiation: a way to enhance the mechanical stability of the zirconia layers. Rev. Adv. Mater. Sci. 10 (2005) 118122 Google Scholar
iii Monceau, D., Petot, C., Petot-Ervas, G., Fraser, JW., Graham, MJ., Sproule, I., Surface segregation and morphology of Mg-doped α-alumina powders, J Eur Ceram Soc 15 (1995) 851858 Google Scholar
iv Brook, RJ., « The materials science of ceramic interfaces », Surfaces and Interfaces in Ceramic Materials, Kluwer Acad. Press, (1989).Google Scholar
v Guo, X. and Zhang, Z.L., Grain Size Dependent Grain Boundary Defect Structure: Case of Doped Zirconia, Acta Materialia, 51, (2003) 25392547 Google Scholar
vi Bernard-Granger, G., Guizard, C., Surblé, S., Baldinozzi, G., Addad, A., Spark plasma sintering of a commercially available granulated zirconia powder—II. Microstructure after sintering and ionic conductivity, Acta Materialia 56 (2008) 46584672 Google Scholar
vii Chick, LA., Pederson, L.R., Maupin, G.D., Bates, J.L., Thomas, L.E., Exarhos, G.J., Glycinenitrate combustion synthesis of oxide ceramic powders, Materials Letters 10 (1990) 612.Google Scholar
viii MacDonald, J. R., Impedance Spectroscopy: Emphasizing Solid Materials and Systems, Wiley Inters., New York, 1987.Google Scholar
ix Aoki, M., Chiang, YM., Kosaki, I., Lee, LJ., Tuller, H., Liu, Y. (1996) Solute segregation and grain boundary impedance in high-purity stabilized zirconia. J Am Ceram Soc 79 (1996) 11691180 Google Scholar
x Rizea, A., Petot, C., Petot-Ervas, G., Graham, MJ., Sproule, I., Kinetic demixing and grain boundary conductivity of yttria-doped zirconia. Ionics 7 (2001) 7284 Google Scholar
xi Petot-Ervas, G., Petot, C., Raulot, JM., Kusinski, J., Sproule, I., Graham, M., Role of the microstructure on the transport properties of Y-doped zirconia and Gd-doped ceria. Ionics 9 (2003) 195201 Google Scholar