No CrossRef data available.
Article contents
Investigation into the thermoelectric properties of GaSb/InAs superlattice structures
Published online by Cambridge University Press: 25 July 2011
Abstract
We report on our investigation into the use of III-V superlattice structures for thermoelectric (TE) applications. Preliminary review of III-V materials trends indicate that the GaSb/InAs superlattice system should offer one of the best potentials for high thermoelectric performance in the 500K-800K range. MOCVD growth of GaSb/InAs superlattice structures was carried out, and relevant structural, thermal, and electrical characterization has been performed. TEM and XRD results demonstrate a well-ordered superlattice structure. Thermal conductivity measurements reveal a reduction in the room-temperature thermal conductivity of GaSb/InAs superlattices (4.4-10.0 W/m-K), relative to either binary GaSb (32 W/m-K) or InAs (27 W/m-K). Additionally, we have worked to optimize the thermoelectric power factor (α2σ), studying both Se- and Te-doping of the superlattice structures, in an effort to demonstrate optimal thermoelectric performance. Our results demonstrate a maximum ZT of 0.36 at 400K for optimally doped n-type GaSb/InAs superlattice structures.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2011